Cargando…

Skeletal Muscle 11beta-HSD1 Controls Glucocorticoid-Induced Proteolysis and Expression of E3 Ubiquitin Ligases Atrogin-1 and MuRF-1

Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin sensitivity. Glucocorticoids induce muscle atrophy via increa...

Descripción completa

Detalles Bibliográficos
Autores principales: Biedasek, Katrin, Andres, Janin, Mai, Knut, Adams, Stephanie, Spuler, Simone, Fielitz, Jens, Spranger, Joachim
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031623/
https://www.ncbi.nlm.nih.gov/pubmed/21304964
http://dx.doi.org/10.1371/journal.pone.0016674
Descripción
Sumario:Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin sensitivity. Glucocorticoids induce muscle atrophy via increased expression of the E3 ubiquitin ligases Atrogin-1 (Muscle Atrophy F-box (MAFbx)) and MuRF-1 (Muscle RING-Finger-1). We hypothesized that 11beta-HSD1 controls glucocorticoid-induced expression of atrophy E3 ubiquitin ligases in skeletal muscle. Primary human myoblasts were generated from healthy volunteers. 11beta-HSD1-dependent protein degradation was analyzed by [(3)H]-tyrosine release assay. RT-PCR was used to determine mRNA expression of E3 ubiquitin ligases and 11beta-HSD1 activity was measured by conversion of radioactively labeled [(3)H]-cortisone to [(3)H]-cortisol separated by thin-layer chromatography. We here demonstrate that 11beta-HSD1 is expressed and biologically active in interconverting cortisone to active cortisol in murine skeletal muscle cells (C2C12) as well as in primary human myotubes. 11beta-HSD1 expression increased during differentiation from myoblasts to mature myotubes (p<0.01), suggesting a role of 11beta-HSD1 in skeletal muscle growth and differentiation. Treatment with cortisone increased protein degradation by about 20% (p<0.001), which was paralleled by an elevation of Atrogin-1 and MuRF-1 mRNA expression (p<0.01, respectively). Notably, pre-treatment with the 11beta-HSD1 inhibitor carbenoxolone (Cbx) completely abolished the effect of cortisone on protein degradation as well as on Atrogin-1 and MuRF-1 expression. In summary, our data suggest that 11beta-HSD1 controls glucocorticoid-induced protein degradation in human and murine skeletal muscle via regulation of the E3 ubiquitin ligases Atrogin-1 and MuRF-1.