Cargando…

The anti-apoptotic function of human αA-crystallin is directly related to its chaperone activity

αA-crystallin is a molecular chaperone and an antiapoptotic protein. This study investigated the mechanism of inhibition of apoptosis by human αA-crystallin and determined if the chaperone activity of αA-crystallin is required for the antiapoptotic function. αA-crystallin inhibited chemical-induced...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasupuleti, N, Matsuyama, S, Voss, O, Doseff, A I, Song, K, Danielpour, D, Nagaraj, R H
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032290/
https://www.ncbi.nlm.nih.gov/pubmed/21364639
http://dx.doi.org/10.1038/cddis.2010.3
Descripción
Sumario:αA-crystallin is a molecular chaperone and an antiapoptotic protein. This study investigated the mechanism of inhibition of apoptosis by human αA-crystallin and determined if the chaperone activity of αA-crystallin is required for the antiapoptotic function. αA-crystallin inhibited chemical-induced apoptosis in Chinese hamster ovary (CHO) cells and HeLa cells by inhibiting activation of caspase-3 and -9. In CHO cells, it inhibited apoptosis induced by the overexpression of human proapoptotic proteins, Bim and Bax. αA-crystallin inhibited doxorubicin-mediated activation of human procaspase-3 in CHO cells and it activated the PI3K/Akt cell survival pathway by promoting the phosphorylation of PDK1, Akt and phosphatase tensin homologue in HeLa cells. The phosphoinositide 3 kinase (PI3K) activity was increased by αA-crystallin overexpression but the protein content was unaltered. Downregulation of PI3K by the expression of a dominant-negative mutant or inhibition by LY294002 abrogated the ability of αA-crystallin to phosphorylate Akt. These antiapoptotic functions of αA-crystallin were enhanced in a mutant protein (R21A) that shows increased chaperone activity than the wild-type (Wt) protein. Interestingly, a mutant protein (R49A) that shows decreased chaperone activity was far weaker than the Wt protein in its antiapoptotic functions. Together, our study results show that αA-crystallin inhibits apoptosis by enhancing PI3K activity and inactivating phosphatase tensin homologue and that the antiapoptotic function is directly related to its chaperone activity.