Cargando…
Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors
Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medic...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032334/ https://www.ncbi.nlm.nih.gov/pubmed/21364635 http://dx.doi.org/10.1038/cddis.2009.23 |
_version_ | 1782197450867474432 |
---|---|
author | Almasieh, M Zhou, Y Kelly, M E Casanova, C Di Polo, A |
author_facet | Almasieh, M Zhou, Y Kelly, M E Casanova, C Di Polo, A |
author_sort | Almasieh, M |
collection | PubMed |
description | Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine-induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential of galantamine as neuroprotectant for glaucoma and other optic neuropathies, and identify muscarinic receptors as potential therapeutic targets for preventing vision loss in these blinding diseases. |
format | Text |
id | pubmed-3032334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-30323342011-02-24 Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors Almasieh, M Zhou, Y Kelly, M E Casanova, C Di Polo, A Cell Death Dis Original Article Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine-induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential of galantamine as neuroprotectant for glaucoma and other optic neuropathies, and identify muscarinic receptors as potential therapeutic targets for preventing vision loss in these blinding diseases. Nature Publishing Group 2010-02 2010-02-18 /pmc/articles/PMC3032334/ /pubmed/21364635 http://dx.doi.org/10.1038/cddis.2009.23 Text en Copyright © 2010 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This article is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Almasieh, M Zhou, Y Kelly, M E Casanova, C Di Polo, A Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title | Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title_full | Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title_fullStr | Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title_full_unstemmed | Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title_short | Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
title_sort | structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032334/ https://www.ncbi.nlm.nih.gov/pubmed/21364635 http://dx.doi.org/10.1038/cddis.2009.23 |
work_keys_str_mv | AT almasiehm structuralandfunctionalneuroprotectioninglaucomaroleofgalantaminemediatedactivationofmuscarinicacetylcholinereceptors AT zhouy structuralandfunctionalneuroprotectioninglaucomaroleofgalantaminemediatedactivationofmuscarinicacetylcholinereceptors AT kellyme structuralandfunctionalneuroprotectioninglaucomaroleofgalantaminemediatedactivationofmuscarinicacetylcholinereceptors AT casanovac structuralandfunctionalneuroprotectioninglaucomaroleofgalantaminemediatedactivationofmuscarinicacetylcholinereceptors AT dipoloa structuralandfunctionalneuroprotectioninglaucomaroleofgalantaminemediatedactivationofmuscarinicacetylcholinereceptors |