Cargando…
Using Stochastic Causal Trees to Augment Bayesian Networks for Modeling eQTL Datasets
BACKGROUND: The combination of genotypic and genome-wide expression data arising from segregating populations offers an unprecedented opportunity to model and dissect complex phenotypes. The immense potential offered by these data derives from the fact that genotypic variation is the sole source of...
Autores principales: | Chipman, Kyle C, Singh, Ambuj K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032670/ https://www.ncbi.nlm.nih.gov/pubmed/21211042 http://dx.doi.org/10.1186/1471-2105-12-7 |
Ejemplares similares
-
Learning Gene Networks under SNP Perturbations Using eQTL Datasets
por: Zhang, Lingxue, et al.
Publicado: (2014) -
Meta-eQTL: a tool set for flexible eQTL meta-analysis
por: Di Narzo, Antonio Fabio, et al.
Publicado: (2014) -
Correction: Learning Gene Networks under SNP Perturbations Using eQTL Datasets
Publicado: (2014) -
Prioritizing candidate eQTL causal genes in Arabidopsis using RANDOM FORESTS
por: Hartanto, Margi, et al.
Publicado: (2022) -
A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules
por: Zhang, Wei, et al.
Publicado: (2010)