Cargando…
Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma
BACKGROUND: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033334/ https://www.ncbi.nlm.nih.gov/pubmed/21232125 http://dx.doi.org/10.1186/1471-2164-12-29 |
_version_ | 1782197562204225536 |
---|---|
author | Ryser, Stephan Glauser, Dominique Vigier, Michelle Zhang, Yong Qiang Tachini, Philippe Schlegel, Werner Durand, Philippe Irminger-Finger, Irmgard |
author_facet | Ryser, Stephan Glauser, Dominique Vigier, Michelle Zhang, Yong Qiang Tachini, Philippe Schlegel, Werner Durand, Philippe Irminger-Finger, Irmgard |
author_sort | Ryser, Stephan |
collection | PubMed |
description | BACKGROUND: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. RESULTS: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. CONCLUSIONS: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer. |
format | Text |
id | pubmed-3033334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30333342011-02-04 Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma Ryser, Stephan Glauser, Dominique Vigier, Michelle Zhang, Yong Qiang Tachini, Philippe Schlegel, Werner Durand, Philippe Irminger-Finger, Irmgard BMC Genomics Research Article BACKGROUND: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. RESULTS: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. CONCLUSIONS: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer. BioMed Central 2011-01-13 /pmc/articles/PMC3033334/ /pubmed/21232125 http://dx.doi.org/10.1186/1471-2164-12-29 Text en Copyright ©2011 Ryser et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ryser, Stephan Glauser, Dominique Vigier, Michelle Zhang, Yong Qiang Tachini, Philippe Schlegel, Werner Durand, Philippe Irminger-Finger, Irmgard Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title | Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title_full | Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title_fullStr | Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title_full_unstemmed | Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title_short | Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
title_sort | gene expression profiling of rat spermatogonia and sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033334/ https://www.ncbi.nlm.nih.gov/pubmed/21232125 http://dx.doi.org/10.1186/1471-2164-12-29 |
work_keys_str_mv | AT ryserstephan geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT glauserdominique geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT vigiermichelle geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT zhangyongqiang geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT tachiniphilippe geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT schlegelwerner geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT durandphilippe geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma AT irmingerfingerirmgard geneexpressionprofilingofratspermatogoniaandsertolicellsrevealssignalingpathwaysfromstemcellstonicheandtesticularcancercellstosurroundingstroma |