Cargando…

Common Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer

Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several...

Descripción completa

Detalles Bibliográficos
Autores principales: Drusco, Alessandra, Pekarsky, Yuri, Costinean, Stefan, Antenucci, Anna, Conti, Laura, Volinia, Stefano, Aqeilan, Rami I., Huebner, Kay, Zanesi, Nicola
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035048/
https://www.ncbi.nlm.nih.gov/pubmed/21318118
http://dx.doi.org/10.1155/2011/984505
Descripción
Sumario:Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.