Cargando…
Speeding up the Consensus Clustering methodology for microarray data analysis
BACKGROUND: The inference of the number of clusters in a dataset, a fundamental problem in Statistics, Data Analysis and Classification, is usually addressed via internal validation measures. The stated problem is quite difficult, in particular for microarrays, since the inferred prediction must be...
Autores principales: | Giancarlo, Raffaele, Utro, Filippo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035181/ https://www.ncbi.nlm.nih.gov/pubmed/21235792 http://dx.doi.org/10.1186/1748-7188-6-1 |
Ejemplares similares
-
Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer
por: Giancarlo, Raffaele, et al.
Publicado: (2008) -
A methodology to assess the intrinsic discriminative ability of a distance function and its interplay with clustering algorithms for microarray data analysis
por: Giancarlo, Raffaele, et al.
Publicado: (2013) -
A basic analysis toolkit for biological sequences
por: Giancarlo, Raffaele, et al.
Publicado: (2007) -
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010) -
A common methodological phylogenomics framework for intra-patient heteroplasmies to infer SARS-CoV-2 sublineages and tumor clones
por: Utro, Filippo, et al.
Publicado: (2021)