Cargando…

Molecular characterization and genetic structure of the Nero Siciliano pig breed

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in p...

Descripción completa

Detalles Bibliográficos
Autores principales: Guastella, Anna Maria, Criscione, Andrea, Marletta, Donata, Zuccaro, Antonio, Chies, Luigi, Bordonaro, Salvatore
Formato: Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036141/
https://www.ncbi.nlm.nih.gov/pubmed/21637573
http://dx.doi.org/10.1590/S1415-47572010005000075
Descripción
Sumario:Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individuals genome derived from ancestry, pigs with at least 70% of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (F(ST) 0.125) and the F(IS) value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.