Cargando…
Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model
BACKGROUND: Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genot...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036602/ https://www.ncbi.nlm.nih.gov/pubmed/21255418 http://dx.doi.org/10.1186/1297-9686-43-5 |
_version_ | 1782197871933652992 |
---|---|
author | Wolc, Anna Stricker, Chris Arango, Jesus Settar, Petek Fulton, Janet E O'Sullivan, Neil P Preisinger, Rudolf Habier, David Fernando, Rohan Garrick, Dorian J Lamont, Susan J Dekkers, Jack CM |
author_facet | Wolc, Anna Stricker, Chris Arango, Jesus Settar, Petek Fulton, Janet E O'Sullivan, Neil P Preisinger, Rudolf Habier, David Fernando, Rohan Garrick, Dorian J Lamont, Susan J Dekkers, Jack CM |
author_sort | Wolc, Anna |
collection | PubMed |
description | BACKGROUND: Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line. METHODS: The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records). The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV. RESULTS: Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight. |
format | Text |
id | pubmed-3036602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30366022011-02-24 Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model Wolc, Anna Stricker, Chris Arango, Jesus Settar, Petek Fulton, Janet E O'Sullivan, Neil P Preisinger, Rudolf Habier, David Fernando, Rohan Garrick, Dorian J Lamont, Susan J Dekkers, Jack CM Genet Sel Evol Research BACKGROUND: Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line. METHODS: The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records). The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV. RESULTS: Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight. BioMed Central 2011-01-21 /pmc/articles/PMC3036602/ /pubmed/21255418 http://dx.doi.org/10.1186/1297-9686-43-5 Text en Copyright ©2011 Wolc et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wolc, Anna Stricker, Chris Arango, Jesus Settar, Petek Fulton, Janet E O'Sullivan, Neil P Preisinger, Rudolf Habier, David Fernando, Rohan Garrick, Dorian J Lamont, Susan J Dekkers, Jack CM Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title | Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title_full | Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title_fullStr | Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title_full_unstemmed | Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title_short | Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
title_sort | breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036602/ https://www.ncbi.nlm.nih.gov/pubmed/21255418 http://dx.doi.org/10.1186/1297-9686-43-5 |
work_keys_str_mv | AT wolcanna breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT strickerchris breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT arangojesus breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT settarpetek breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT fultonjanete breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT osullivanneilp breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT preisingerrudolf breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT habierdavid breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT fernandorohan breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT garrickdorianj breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT lamontsusanj breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel AT dekkersjackcm breedingvaluepredictionforproductiontraitsinlayerchickensusingpedigreeorgenomicrelationshipsinareducedanimalmodel |