Cargando…
EEG-based neonatal seizure detection with Support Vector Machines
OBJECTIVE: The study presents a multi-channel patient-independent neonatal seizure detection system based on the Support Vector Machine (SVM) classifier. METHODS: A machine learning algorithm (SVM) is used as a classifier to discriminate between seizure and non-seizure EEG epochs. Two post-processin...
Autores principales: | Temko, A., Thomas, E., Marnane, W., Lightbody, G., Boylan, G. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036797/ https://www.ncbi.nlm.nih.gov/pubmed/20713314 http://dx.doi.org/10.1016/j.clinph.2010.06.034 |
Ejemplares similares
-
Performance assessment for EEG-based neonatal seizure detectors
por: Temko, A., et al.
Publicado: (2011) -
Clinical implementation of a neonatal seizure detection algorithm
por: Temko, Andriy, et al.
Publicado: (2015) -
An Automated System for Grading EEG Abnormality in Term Neonates with Hypoxic-Ischaemic Encephalopathy
por: Stevenson, N. J., et al.
Publicado: (2012) -
Validation of an automated seizure detection algorithm for term neonates
por: Mathieson, Sean R., et al.
Publicado: (2016) -
In-depth performance analysis of an EEG based neonatal seizure detection algorithm
por: Mathieson, S., et al.
Publicado: (2016)