Cargando…
An intronic mutation in MLH1 associated with familial colon and breast cancer
Single base substitutions can lead to missense mutations, silent mutations or intronic mutations, whose significance is uncertain. Aberrant splicing can occur due to mutations that disrupt or create canonical splice sites or splicing regulatory sequences. The assessment of their pathogenic role may...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036834/ https://www.ncbi.nlm.nih.gov/pubmed/20717847 http://dx.doi.org/10.1007/s10689-010-9371-4 |
Sumario: | Single base substitutions can lead to missense mutations, silent mutations or intronic mutations, whose significance is uncertain. Aberrant splicing can occur due to mutations that disrupt or create canonical splice sites or splicing regulatory sequences. The assessment of their pathogenic role may be difficult, and is further complicated by the phenomenon of alternative splicing. We describe an HNPCC patient, with early-onset colorectal cancer and a strong family history of colorectal and breast tumors, who harbours a germ line MLH1 intronic variant (IVS9 c.790 +4A>T). The proband, together with 2 relatives affected by colorectal-cancer and 1 by breast cancer, have been investigated for microsatellite instability, immunohistochemical MMR protein staining, direct sequencing and Multiplex Ligation-dependent Probe Amplification. The effect of the intronic variant was analyzed both by splicing prediction software and by hybrid minigene splicing assay. In this family, we found a novel MLH1 germline intronic variant (IVS9 c.790 +4A>T) in intron 9, consisting of an A to T transversion, in position +4 of the splice donor site of MLH1. The mutation is associated with the lack of expression of the MLH1 protein and MSI in tumour tissues. Furthermore, our results suggest that this substitution leads to a complete skip of both exon 9 and 10 of the mutant allele. Our findings suggest that this intronic variant plays a pathogenic role. |
---|