Cargando…
A novel point mutation in a class IV glucose-6-phosphate dehydrogenase variant (G6PD São Paulo) and polymorphic G6PD variants in São Paulo State, Brazil
In this study, we used red cell glucose-6-phosphate dehydrogenase (G6PD) activity to screen for G6PD-deficient individuals in 373 unrelated asymptomatic adult men who were working with insecticides (organophosphorus and carbamate) in dengue prevention programs in 27 cities in São Paulo State, Brazil...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Genética
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036924/ https://www.ncbi.nlm.nih.gov/pubmed/21637675 http://dx.doi.org/10.1590/S1415-47572009005000033 |
Sumario: | In this study, we used red cell glucose-6-phosphate dehydrogenase (G6PD) activity to screen for G6PD-deficient individuals in 373 unrelated asymptomatic adult men who were working with insecticides (organophosphorus and carbamate) in dengue prevention programs in 27 cities in São Paulo State, Brazil. Twenty-one unrelated male children suspected of having erythroenzymopathy who were attended at hospitals in São Paulo city were also studied. Fifteen of the 373 adults and 12 of the 21 children were G6PD deficient. G6PD gene mutations were investigated in these G6PD-deficient individuals by using PCR-RFLP, PCR-SSCP analysis and DNA sequencing. Twelve G6PD A-202A/376G and two G6PD Seattle844C, as well as a new variant identified as G6PD São Paulo, were detected among adults, and 11 G6PD A-202A/376G and one G6PD Seattle844C were found among children. The novel mutation c.660C > G caused the replacement of isoleucine by methionine (I220M) in a region near the dimer interface of the molecule. The conservative nature of this mutation (substitution of a nonpolar aliphatic amino acid for another one) could explain why there was no corresponding change in the loss of G6PD activity (64.5% of normal activity in both cases). |
---|