Cargando…

G(12/13) Signaling Pathways Substitute for Integrin αIIbβ3-Signaling for Thromboxane Generation in Platelets

BACKGROUND: We have previously shown that ADP-induced TXA(2) generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA(2) generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G(12/13) s...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhavaraju, Kamala, Lakhani, Parth R., Dorsam, Robert T., Jin, Jianguo, Hitchcock, Ian S., Sanjay, Archana, Kunapuli, Satya P.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037367/
https://www.ncbi.nlm.nih.gov/pubmed/21347357
http://dx.doi.org/10.1371/journal.pone.0016586
Descripción
Sumario:BACKGROUND: We have previously shown that ADP-induced TXA(2) generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA(2) generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G(12/13) signaling pathways. Hence, we evaluated the role of these pathways in TXA(2) generation. PRINCIPAL FINDINGS: Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G(12/13) pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G(12/13) pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G(12/13) pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, αIIbβ3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G(12/13) pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA(2) generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA(2) generation. CONCLUSIONS: Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G(12/13) pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G(12/13) pathways contributing to TXA(2) generation in platelets remains elusive.