Cargando…
Identification of disease-causing genes using microarray data mining and Gene Ontology
BACKGROUND: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of...
Autores principales: | Mohammadi, Azadeh, Saraee, Mohammad H, Salehi, Mansoor |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037837/ https://www.ncbi.nlm.nih.gov/pubmed/21269461 http://dx.doi.org/10.1186/1755-8794-4-12 |
Ejemplares similares
-
Mining Gene Ontology Data with AGENDA
por: Ovezmyradov, Guvanch, et al.
Publicado: (2012) -
Visualization and analysis of microarray and gene ontology data with treemaps
por: Baehrecke, Eric H, et al.
Publicado: (2004) -
Integration of text- and data-mining using ontologies successfully selects disease gene candidates
por: Tiffin, Nicki, et al.
Publicado: (2005) -
Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data
por: Lewin, Alex, et al.
Publicado: (2006) -
Cross-Ontology Multi-level Association Rule Mining in the Gene Ontology
por: Manda, Prashanti, et al.
Publicado: (2012)