Cargando…

Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

BACKGROUND: A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Foster, Andrea L, Ashley, Roger P, Rytuba, James J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037876/
https://www.ncbi.nlm.nih.gov/pubmed/21261983
http://dx.doi.org/10.1186/1467-4866-12-1
_version_ 1782198022873022464
author Foster, Andrea L
Ashley, Roger P
Rytuba, James J
author_facet Foster, Andrea L
Ashley, Roger P
Rytuba, James J
author_sort Foster, Andrea L
collection PubMed
description BACKGROUND: A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. RESULTS: The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca(2)Fe(AsO(4))(3)O(3)•3H(2)O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The linear combination, least-squares fits totals of several samples deviate by more than ± 20% from 100%, suggesting that additional phases may be present that were not identified or evaluated in this study. CONCLUSIONS: Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe(3+)-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed.
format Text
id pubmed-3037876
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30378762011-02-12 Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA Foster, Andrea L Ashley, Roger P Rytuba, James J Geochem Trans Research Article BACKGROUND: A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. RESULTS: The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca(2)Fe(AsO(4))(3)O(3)•3H(2)O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The linear combination, least-squares fits totals of several samples deviate by more than ± 20% from 100%, suggesting that additional phases may be present that were not identified or evaluated in this study. CONCLUSIONS: Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe(3+)-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed. BioMed Central 2011-01-24 /pmc/articles/PMC3037876/ /pubmed/21261983 http://dx.doi.org/10.1186/1467-4866-12-1 Text en Copyright ©2011 Foster et al; licensee Chemistry Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Foster, Andrea L
Ashley, Roger P
Rytuba, James J
Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title_full Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title_fullStr Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title_full_unstemmed Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title_short Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
title_sort arsenic species in weathering mine tailings and biogenic solids at the lava cap mine superfund site, nevada city, ca
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037876/
https://www.ncbi.nlm.nih.gov/pubmed/21261983
http://dx.doi.org/10.1186/1467-4866-12-1
work_keys_str_mv AT fosterandreal arsenicspeciesinweatheringminetailingsandbiogenicsolidsatthelavacapminesuperfundsitenevadacityca
AT ashleyrogerp arsenicspeciesinweatheringminetailingsandbiogenicsolidsatthelavacapminesuperfundsitenevadacityca
AT rytubajamesj arsenicspeciesinweatheringminetailingsandbiogenicsolidsatthelavacapminesuperfundsitenevadacityca