Cargando…
Systematic Evaluation of Three microRNA Profiling Platforms: Microarray, Beads Array, and Quantitative Real-Time PCR Array
BACKGROUND: A number of gene-profiling methodologies have been applied to microRNA research. The diversity of the platforms and analytical methods makes the comparison and integration of cross-platform microRNA profiling data challenging. In this study, we systematically analyze three representative...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037970/ https://www.ncbi.nlm.nih.gov/pubmed/21347261 http://dx.doi.org/10.1371/journal.pone.0017167 |
Sumario: | BACKGROUND: A number of gene-profiling methodologies have been applied to microRNA research. The diversity of the platforms and analytical methods makes the comparison and integration of cross-platform microRNA profiling data challenging. In this study, we systematically analyze three representative microRNA profiling platforms: Locked Nucleic Acid (LNA) microarray, beads array, and TaqMan quantitative real-time PCR Low Density Array (TLDA). METHODOLOGY/PRINCIPAL FINDINGS: The microRNA profiles of 40 human osteosarcoma xenograft samples were generated by LNA array, beads array, and TLDA. Results show that each of the three platforms perform similarly regarding intra-platform reproducibility or reproducibility of data within one platform while LNA array and TLDA had the best inter-platform reproducibility or reproducibility of data across platforms. The endogenous controls/probes contained in each platform have been observed for their stability under different treatments/environments; those included in TLDA have the best performance with minimal coefficients of variation. Importantly, we identify that the proper selection of normalization methods is critical for improving the inter-platform reproducibility, which is evidenced by the application of two non-linear normalization methods (loess and quantile) that substantially elevated the sensitivity and specificity of the statistical data assessment. CONCLUSIONS: Each platform is relatively stable in terms of its own microRNA profiling intra-reproducibility; however, the inter-platform reproducibility among different platforms is low. More microRNA specific normalization methods are in demand for cross-platform microRNA microarray data integration and comparison, which will improve the reproducibility and consistency between platforms. |
---|