Cargando…
Performance characteristics of a novel blood bag in-line closure device and subsequent product quality assessment
BACKGROUND: In high-volume processing environments, manual breakage of in-line closures can result in repetitive strain injury (RSI). Furthermore, these closures may be incorrectly opened causing shear-induced hemolysis. To overcome the variability of in-line closure use and minimize RSI, Fresenius...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Inc
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039751/ https://www.ncbi.nlm.nih.gov/pubmed/20529007 http://dx.doi.org/10.1111/j.1537-2995.2010.02709.x |
Sumario: | BACKGROUND: In high-volume processing environments, manual breakage of in-line closures can result in repetitive strain injury (RSI). Furthermore, these closures may be incorrectly opened causing shear-induced hemolysis. To overcome the variability of in-line closure use and minimize RSI, Fresenius Kabi developed a new in-line closure, the CompoFlow, with mechanical openers. STUDY DESIGN AND METHODS: The consistency of the performance of the CompoFlow closure device was assessed, as was its effect on component quality. A total of 188 RBC units using CompoFlow blood bag systems and 43 using the standard bag systems were produced using the buffy coat manufacturing method. Twenty-six CompoFlow platelet (PLT) concentrates and 10 control concentrates were prepared from pools of four buffy coats. RBCs were assessed on Days 1, 21, and 42 for cellular variables and hemolysis. PLTs were assessed on Days 1, 3, and 7 for morphology, CD62P expression, glucose, lactate, and pH. A total of 308 closures were excised after processing and the apertures were measured using digital image analysis. RESULTS: The use of the CompoFlow device significantly improved the mean extraction time with 0.46 ± 0.11 sec/mL for the CompoFlow units and 0.52 ± 0.13 sec/mL for the control units. The CompoFlow closures showed a highly reproducible aperture after opening (coefficient of variation, 15%) and the device always remained opened. PLT and RBC products showed acceptable storage variables with no differences between CompoFlow and control. CONCLUSIONS: The CompoFlow closure devices improved the level of process control and processing time of blood component production with no negative effects on product quality. |
---|