Cargando…

Modulation of Ca(2+) Signals by Epigallocatechin-3-gallate(EGCG) in Cultured Rat Hippocampal Neurons

Green tea has been receiving considerable attention as a possible neuroprotective agent against neurodegenerative disease. Epigallocatechin-3-gallate (EGCG) is the major compound of green tea. Calcium signaling has profound effects on almost all aspects of neuronal function. Using digital calcium im...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiang-Hua, Cheng, Jin, Li, Cai-Rong, Ye, Mao, Ma, Zhe, Cai, Fei
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039977/
https://www.ncbi.nlm.nih.gov/pubmed/21340011
http://dx.doi.org/10.3390/ijms12010742
Descripción
Sumario:Green tea has been receiving considerable attention as a possible neuroprotective agent against neurodegenerative disease. Epigallocatechin-3-gallate (EGCG) is the major compound of green tea. Calcium signaling has profound effects on almost all aspects of neuronal function. Using digital calcium imaging and patch-clamp technique, we determined the effects of EGCG on Ca(2+) signals in hippocampal neurons. The results indicated that EGCG caused a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)](i)). This [Ca(2+)](i) increase was blocked by depleting intracellular Ca(2+) stores with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin and cyclopiazonic acid. Furthermore, EGCG-stimulated increase in [Ca(2+)](i) was abolished following treatment with a PLC inhibitor. However, EGCG inhibited high-voltage activated Ca(2+) currents (I(HVA)) and NMDA-induced inward currents (I(NMDA)). These data suggest that EGCG triggers a cascade of events: it activates phospholipase C (PLC), mobilizes intracellular Ca(2+) stores, raises the cytosolic Ca(2+) levels, and inhibits the VGCC and NMDA receptors-mediated Ca(2+) influx through a process that remains to be determined.