Cargando…

General lack of global dosage compensation in ZZ/ZW systems? Broadening the perspective with RNA-seq

BACKGROUND: Species with heteromorphic sex chromosomes face the challenge of large-scale imbalance in gene dose. Microarray-based studies in several independent male heterogametic XX/XY systems suggest that dosage compensation mechanisms are in place to mitigate the detrimental effects of gene dose...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Jochen BW, Bryk, Jarosław
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040151/
https://www.ncbi.nlm.nih.gov/pubmed/21284834
http://dx.doi.org/10.1186/1471-2164-12-91
Descripción
Sumario:BACKGROUND: Species with heteromorphic sex chromosomes face the challenge of large-scale imbalance in gene dose. Microarray-based studies in several independent male heterogametic XX/XY systems suggest that dosage compensation mechanisms are in place to mitigate the detrimental effects of gene dose differences. However, recent genomic research on female heterogametic ZZ/ZW systems has generated surprising results. In two bird species and one lepidopteran no evidence for a global dosage compensating mechanism has been found. The recent advent of massively parallel RNA sequencing now opens up the possibility to gauge the generality of this observation with a broader phylogenetic sampling. It further allows assessing the validity of microarray-based inference on dosage compensation with a novel technology. RESULTS: We here expemplify this approach using massively parallel sequencing on barcoded individuals of a bird species, the European crow (Corvus corone), where previously no genetic resources were available. Testing for Z-linkage with quantitative PCR (qPCR,) we first establish that orthology with distantly related species (chicken, zebra finch) can be used as a good predictor for chromosomal affiliation of a gene. We then use a digital measure of gene expression (RNA-seq) on brain transcriptome and confirm a global lack of dosage compensation on the Z chromosome. RNA-seq estimates of male-to-female (m:f) expression difference on the Z compare well to previous microarray-based estimates in birds and lepidopterans. The data further lends support that an up-regulation of female Z-linked genes conveys partial compensation and suggest a relationship between sex-bias and absolute expression level of a gene. Correlation of sex-biased gene expression on the Z chromosome across all three bird species further suggests that the degree of compensation has been partly conserved across 100 million years of avian evolution. CONCLUSIONS: This work demonstrates that the study of dosage compensation has become amenable to species where previously no genetic resources were available. Massively parallele transcriptome sequencing allows re-assessing the degree of dosage compensation with a novel tool in well-studies species and, in addition, gain valuable insights into the generality of mechanisms across independent taxonomic group for both the XX/XY and ZZ/ZW system.