Cargando…
Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data
BACKGROUND: Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM us...
Autores principales: | Song, Sutao, Zhan, Zhichao, Long, Zhiying, Zhang, Jiacai, Yao, Li |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040226/ https://www.ncbi.nlm.nih.gov/pubmed/21359184 http://dx.doi.org/10.1371/journal.pone.0017191 |
Ejemplares similares
-
Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
por: Wang, Yanlu, et al.
Publicado: (2015) -
Select and Cluster: A Method for Finding Functional Networks of Clustered Voxels in fMRI
por: DonGiovanni, Danilo, et al.
Publicado: (2016) -
Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications
por: Zhang, Jing, et al.
Publicado: (2018) -
Mapping the Voxel-Wise Effective Connectome in Resting State fMRI
por: Wu, Guo-Rong, et al.
Publicado: (2013) -
Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories
por: Moseley, Rachel L., et al.
Publicado: (2014)