Cargando…

Mast Cell/IL-4 Control of Francisella tularensis Replication and Host Cell Death is Associated with Increased ATP Production and Phagosomal Acidification

Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez, Annette R., Yu, Jieh-Juen, Murthy, Ashlesh K., Guentzel, M. Neal, Klose, Karl E., Forsthuber, Thomas G., Chambers, James P., Berton, Michael T., Arulanandam, Bernard. P.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040285/
https://www.ncbi.nlm.nih.gov/pubmed/20861832
http://dx.doi.org/10.1038/mi.2010.59
Descripción
Sumario:Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor (IL-4R(−/ −)) exhibited greater susceptibility to pulmonary challenge. In this study, we further evaluated the mechanism(s) by which mast cells/IL-4 control intramacrophage bacterial replication and host cell death, and found that IL-4R(−/ −) mice exhibited significantly greater induction of active caspase-3 within lung macrophages than wild-type animals following intranasal challenge with either LVS or the human virulent type A strain SCHU S4. Treatment of LVS infected bone marrow-derived macrophages with a pancaspase inhibitor (zVAD) did not alter bacterial replication, but minimized active caspase-3 and other markers (Annexin V and propidium iodide) of cell death, while treatment with both rIL-4 and zVAD resulted in concomitant reduction of both parameters, suggesting that inhibition of bacterial replication by IL-4 was independent of caspase activation. Interestingly, IL-4-treated infected macrophages exhibited significantly increased ATP production and phagolysosomal acidification, as well as enhanced mannose receptor up-regulation and increased internalization with acidification, which correlated with observations in mast cell-macrophage co-cultures, with resultant decreases in F. tularensis replication.