Cargando…

Sequence analysis and homology modeling of laccase from Pycnoporus cinnabarinus

Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to deci...

Descripción completa

Detalles Bibliográficos
Autores principales: Meshram, Rohan J, Gavhane, AJ, Gaikar, RB, Bansode, TS, Maskar, AU, Gupta, AK, Sohni, SK, Patidar, MA, Pandey, TR, Jangle, SN
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040475/
https://www.ncbi.nlm.nih.gov/pubmed/21364777
Descripción
Sumario:Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2‐azinobis (3‐ethylbenzthiazoline‐6‐sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.