Cargando…
Hybrid cloud and cluster computing paradigms for life science applications
BACKGROUND: Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an ite...
Autores principales: | Qiu, Judy, Ekanayake, Jaliya, Gunarathne, Thilina, Choi, Jong Youl, Bae, Seung-Hee, Li, Hui, Zhang, Bingjing, Wu, Tak-Lon, Ruan, Yang, Ekanayake, Saliya, Hughes, Adam, Fox, Geoffrey |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040529/ https://www.ncbi.nlm.nih.gov/pubmed/21210982 http://dx.doi.org/10.1186/1471-2105-11-S12-S3 |
Ejemplares similares
-
Interpolative multidimensional scaling techniques for the identification of clusters in very large sequence sets
por: Hughes, Adam, et al.
Publicado: (2012) -
Galaxy CloudMan: delivering cloud compute clusters
por: Afgan, Enis, et al.
Publicado: (2010) -
Changing the diabetes treatment paradigm from glucose control to cardiorenal protection
por: Ekanayake, Preethika, et al.
Publicado: (2021) -
Hadoop MapReduce v2 cookbook
por: Gunarathne, Thilina
Publicado: (2015) -
Haplotyping via minimum recombinant paradigm
por: Hernández-Sánchez, Jules, et al.
Publicado: (2009)