Cargando…
Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury
BACKGROUND: Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the long...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040708/ https://www.ncbi.nlm.nih.gov/pubmed/21299884 http://dx.doi.org/10.1186/1423-0127-18-13 |
_version_ | 1782198361508544512 |
---|---|
author | Wang, Chih-Yen Chen, Jen-Kun Wu, Yi-Ting Tsai, May-Jywan Shyue, Song-Kun Yang, Chung-Shi Tzeng, Shun-Fen |
author_facet | Wang, Chih-Yen Chen, Jen-Kun Wu, Yi-Ting Tsai, May-Jywan Shyue, Song-Kun Yang, Chung-Shi Tzeng, Shun-Fen |
author_sort | Wang, Chih-Yen |
collection | PubMed |
description | BACKGROUND: Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated. METHODS: Through two-dimensional electrophoresis (2DE)-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC) at day 1 (acute) and day 14 (subacute) after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC) was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: Our results showed a decline in catalase (CAT) and Mn-superoxide dismutase (MnSOD) found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG), and F-actin-capping protein subunit β (CAPZB) at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin(+ )immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG)-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC) at day 3 post SCI improved the hindlimb locomotion in SCI rats. CONCLUSIONS: Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction and stress contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair. |
format | Text |
id | pubmed-3040708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30407082011-02-18 Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury Wang, Chih-Yen Chen, Jen-Kun Wu, Yi-Ting Tsai, May-Jywan Shyue, Song-Kun Yang, Chung-Shi Tzeng, Shun-Fen J Biomed Sci Research BACKGROUND: Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated. METHODS: Through two-dimensional electrophoresis (2DE)-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC) at day 1 (acute) and day 14 (subacute) after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC) was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: Our results showed a decline in catalase (CAT) and Mn-superoxide dismutase (MnSOD) found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG), and F-actin-capping protein subunit β (CAPZB) at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin(+ )immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG)-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC) at day 3 post SCI improved the hindlimb locomotion in SCI rats. CONCLUSIONS: Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction and stress contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair. BioMed Central 2011-02-07 /pmc/articles/PMC3040708/ /pubmed/21299884 http://dx.doi.org/10.1186/1423-0127-18-13 Text en Copyright © 2011 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wang, Chih-Yen Chen, Jen-Kun Wu, Yi-Ting Tsai, May-Jywan Shyue, Song-Kun Yang, Chung-Shi Tzeng, Shun-Fen Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title | Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title_full | Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title_fullStr | Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title_full_unstemmed | Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title_short | Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
title_sort | reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040708/ https://www.ncbi.nlm.nih.gov/pubmed/21299884 http://dx.doi.org/10.1186/1423-0127-18-13 |
work_keys_str_mv | AT wangchihyen reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT chenjenkun reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT wuyiting reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT tsaimayjywan reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT shyuesongkun reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT yangchungshi reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury AT tzengshunfen reductioninantioxidantenzymeexpressionandsustainedinflammationenhancetissuedamageinthesubacutephaseofspinalcordcontusiveinjury |