Cargando…
Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy
BACKGROUND: There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin res...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040766/ https://www.ncbi.nlm.nih.gov/pubmed/21359201 http://dx.doi.org/10.1371/journal.pone.0017178 |
_version_ | 1782198374039027712 |
---|---|
author | Vyas, Arpita Kalla Yang, Kai-Chien Woo, Dennis Tzekov, Anatoly Kovacs, Attila Jay, Patrick Y. Hruz, Paul W. |
author_facet | Vyas, Arpita Kalla Yang, Kai-Chien Woo, Dennis Tzekov, Anatoly Kovacs, Attila Jay, Patrick Y. Hruz, Paul W. |
author_sort | Vyas, Arpita Kalla |
collection | PubMed |
description | BACKGROUND: There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin responsive facilitative glucose transporter GLUT4 precipitates acute decompensated heart failure in mice with advanced dilated cardiomyopathy. Our current objective was to determine whether pharmacologic enhancement of insulin sensitivity and myocardial glucose uptake preserves cardiac function and survival in the setting of primary heart failure. METHODOLOGY/PRINCIPAL FINDINGS: The GLP-1 agonist exenatide was administered twice daily to a murine model of dilated cardiomyopathy (TG9) starting at 56 days of life. TG9 mice develop congestive heart failure and secondary insulin resistance in a highly predictable manner with death by 12 weeks of age. Glucose homeostasis was assessed by measuring glucose tolerance at 8 and 10 weeks and tissue 2-deoxyglucose uptake at 75 days. Exenatide treatment improved glucose tolerance, myocardial GLUT4 expression and 2-deoxyglucose uptake, cardiac contractility, and survival over control vehicle-treated TG9 mice. Phosphorylation of AMP kinase and AKT was also increased in exenatide-treated animals. Total myocardial GLUT1 levels were not different between groups. Exenatide also abrogated the detrimental effect of the GLUT4 antagonist ritonavir on survival in TG9 mice. CONCLUSION/SIGNIFICANCE: In heart failure secondary insulin resistance is maladaptive and myocardial glucose uptake is suboptimal. An incretin-based therapy, which addresses these changes, appears beneficial. |
format | Text |
id | pubmed-3040766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30407662011-02-25 Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy Vyas, Arpita Kalla Yang, Kai-Chien Woo, Dennis Tzekov, Anatoly Kovacs, Attila Jay, Patrick Y. Hruz, Paul W. PLoS One Research Article BACKGROUND: There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin responsive facilitative glucose transporter GLUT4 precipitates acute decompensated heart failure in mice with advanced dilated cardiomyopathy. Our current objective was to determine whether pharmacologic enhancement of insulin sensitivity and myocardial glucose uptake preserves cardiac function and survival in the setting of primary heart failure. METHODOLOGY/PRINCIPAL FINDINGS: The GLP-1 agonist exenatide was administered twice daily to a murine model of dilated cardiomyopathy (TG9) starting at 56 days of life. TG9 mice develop congestive heart failure and secondary insulin resistance in a highly predictable manner with death by 12 weeks of age. Glucose homeostasis was assessed by measuring glucose tolerance at 8 and 10 weeks and tissue 2-deoxyglucose uptake at 75 days. Exenatide treatment improved glucose tolerance, myocardial GLUT4 expression and 2-deoxyglucose uptake, cardiac contractility, and survival over control vehicle-treated TG9 mice. Phosphorylation of AMP kinase and AKT was also increased in exenatide-treated animals. Total myocardial GLUT1 levels were not different between groups. Exenatide also abrogated the detrimental effect of the GLUT4 antagonist ritonavir on survival in TG9 mice. CONCLUSION/SIGNIFICANCE: In heart failure secondary insulin resistance is maladaptive and myocardial glucose uptake is suboptimal. An incretin-based therapy, which addresses these changes, appears beneficial. Public Library of Science 2011-02-17 /pmc/articles/PMC3040766/ /pubmed/21359201 http://dx.doi.org/10.1371/journal.pone.0017178 Text en Kalla Vyas et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Vyas, Arpita Kalla Yang, Kai-Chien Woo, Dennis Tzekov, Anatoly Kovacs, Attila Jay, Patrick Y. Hruz, Paul W. Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title | Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title_full | Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title_fullStr | Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title_full_unstemmed | Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title_short | Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy |
title_sort | exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040766/ https://www.ncbi.nlm.nih.gov/pubmed/21359201 http://dx.doi.org/10.1371/journal.pone.0017178 |
work_keys_str_mv | AT vyasarpitakalla exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT yangkaichien exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT woodennis exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT tzekovanatoly exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT kovacsattila exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT jaypatricky exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy AT hruzpaulw exenatideimprovesglucosehomeostasisandprolongssurvivalinamurinemodelofdilatedcardiomyopathy |