Cargando…
Purification and Characterization of the RecA Protein from Neisseria gonorrhoeae
The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted infection gonorrhea. The recA gene from N. gonorrhoeae is essential for DNA repair, natural DNA transformation, and pilin antigenic variation, all processes that are important for the pathogenesis...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040777/ https://www.ncbi.nlm.nih.gov/pubmed/21359151 http://dx.doi.org/10.1371/journal.pone.0017101 |
Sumario: | The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted infection gonorrhea. The recA gene from N. gonorrhoeae is essential for DNA repair, natural DNA transformation, and pilin antigenic variation, all processes that are important for the pathogenesis and persistence of N. gonorrhoeae in the human population. To understand the biochemical features of N. gonorrhoeae RecA (RecA(Ng)), we overexpressed and purified the RecA(Ng) and SSB(Ng) proteins and compared their activities to those of the well-characterized E. coli RecA and SSB proteins in vitro. We observed that RecA(Ng) promoted more strand exchange at early time points than RecA(Ec) through DNA homologous substrates, and exhibited the highest ATPase activity of any RecA protein characterized to date. Further analysis of this robust ATPase activity revealed that RecA(Ng) is more efficient at displacing SSB from ssDNA and that RecA(Ng) shows higher ATPase activity during strand exchange than RecA(Ec). Using substrates created to mimic the cellular processes of DNA transformation and pilin antigenic variation we observed that RecA(Ec) catalyzed more strand exchange through a 100 bp heterologous insert, but that RecA(Ng) catalyzed more strand exchange through regions of microheterology. Together, these data suggest that the processes of ATP hydrolysis and DNA strand exchange may be coupled differently in RecA(Ng) than in RecA(Ec). This difference may explain the unusually high ATPase activity observed for RecA(Ng) with the strand exchange activity between RecA(Ng) and RecA(Ec) being more similar. |
---|