Cargando…
Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features
Text classifiers have been used for biosurveillance tasks to identify patients with diseases or conditions of interest. When compared to a clinical reference standard of 280 cases of Acute Respiratory Infection (ARI), a text classifier consisting of simple rules and NegEx plus string matching for sp...
Autores principales: | South, Brett R., Shen, Shuying, Chapman, Wendy W., Delisle, Sylvain, Samore, Matthew H., Gundlapalli, Adi V. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041533/ https://www.ncbi.nlm.nih.gov/pubmed/21347150 |
Ejemplares similares
-
Correction: Combining Free Text and Structured Electronic Medical Record Entries to Detect Acute Respiratory Infections
por: DeLisle, Sylvain, et al.
Publicado: (2011) -
Computerized Text Analysis to Enhance Automated Pneumonia Detection
por: DeLisle, Sylvain, et al.
Publicado: (2013) -
Application of Natural Language Processing to VA Electronic Health Records to Identify Phenotypic Characteristics for Clinical and Research Purposes
por: Gundlapalli, Adi V., et al.
Publicado: (2008) -
Developing a manually annotated clinical document corpus to identify phenotypic information for inflammatory bowel disease
por: South, Brett R, et al.
Publicado: (2009) -
Developing a Manually Annotated Clinical Document Corpus to Identify Phenotypic Information for Inflammatory Bowel Disease
por: South, Brett R, et al.
Publicado: (2009)