Cargando…
Automatically Classifying Sentences in Full-Text Biomedical Articles into Introduction, Methods, Results and Discussion
Biomedical texts can be typically represented by four rhetorical categories: introduction, methods, results and discussion (IMRAD). Classifying sentences into these categories can benefit many other text-mining tasks. Although many studies have applied approaches to automatically classify sentences...
Autores principales: | Agarwal, Shashank, Yu, Hong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041564/ https://www.ncbi.nlm.nih.gov/pubmed/21347163 |
Ejemplares similares
-
Beyond Captions: Linking Figures with Abstract Sentences in Biomedical Articles
por: Bockhorst, Joseph P., et al.
Publicado: (2012) -
Database Citation in Full Text Biomedical Articles
por: Kafkas, Şenay, et al.
Publicado: (2013) -
BioN∅T: A searchable database of biomedical negated sentences
por: Agarwal, Shashank, et al.
Publicado: (2011) -
Challenges for automatically extracting molecular interactions from full-text articles
por: McIntosh, Tara, et al.
Publicado: (2009) -
The TREC 2004 genomics track categorization task: classifying full text biomedical documents
por: Cohen, Aaron M, et al.
Publicado: (2006)