Cargando…
Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering
Motivation: With the advancements of next-generation sequencing technology, it is now possible to study samples directly obtained from the environment. Particularly, 16S rRNA gene sequences have been frequently used to profile the diversity of organisms in a sample. However, such studies are still t...
Autores principales: | Hao, Xiaolin, Jiang, Rui, Chen, Ting |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042185/ https://www.ncbi.nlm.nih.gov/pubmed/21233169 http://dx.doi.org/10.1093/bioinformatics/btq725 |
Ejemplares similares
-
Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering
por: Franzén, Oscar, et al.
Publicado: (2015) -
Erratum to: Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering
por: Franzén, Oscar, et al.
Publicado: (2015) -
An independent evaluation in a CRC patient cohort of microbiome 16S rRNA sequence analysis methods: OTU clustering, DADA2, and Deblur
por: Liu, Guang, et al.
Publicado: (2023) -
M-pick, a modularity-based method for OTU picking of 16S rRNA sequences
por: Wang, Xiaoyu, et al.
Publicado: (2013) -
OTUX: V-region specific OTU database for improved 16S rRNA OTU picking and efficient cross-study taxonomic comparison of microbiomes
por: Yadav, Deepak, et al.
Publicado: (2019)