Cargando…

Simvastatin Re-Couples Dysfunctional Endothelial Nitric Oxide Synthase in Experimental Subarachnoid Hemorrhage

Reduced endothelial nitric oxide synthase (eNOS) function has been linked to secondary complications of subarachnoid hemorrhage (SAH). We previously found that there is increased eNOS function after SAH but that it is uncoupled, leading to secondary complications such as vasospasm, microthromboembol...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabri, Mohammed, Ai, Jinglu, Marsden, Philip A., Macdonald, R. Loch
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044158/
https://www.ncbi.nlm.nih.gov/pubmed/21373645
http://dx.doi.org/10.1371/journal.pone.0017062
Descripción
Sumario:Reduced endothelial nitric oxide synthase (eNOS) function has been linked to secondary complications of subarachnoid hemorrhage (SAH). We previously found that there is increased eNOS function after SAH but that it is uncoupled, leading to secondary complications such as vasospasm, microthromboembolism and neuronal apoptosis. Here we test the hypothesis that recoupling eNOS with simvastatin can prevent these complications. SAH was created in mice that were treated with vehicle or simvastatin starting 2 weeks before or 30 minutes after SAH. SAH increased phosphorylated eNOS which was prevented by pre- or post-treatment with simvastatin. Simvastatin pre-treatment also prevented the increase in eNOS monomer formation that was associated with SAH, decreased superoxide anion radical production and increased NO. These changes were associated with decreased vasospasm, microthromboemboli and neuronal injury. The data suggest that simvastatin re-couples eNOS after SAH, leading to decreased secondary complications such as vasospasm, microthromboemboli and neuronal injury.