Cargando…
Preparation and characterization of magnetic nanoparticles containing Fe(3)O(4)-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector
OBJECTIVE: To evaluate the feasibility of using magnetic iron oxide (Fe(3)O(4))-dextran-anti-β-human chorionic gonadotropin (HCG) nanoparticles as a gene vector for cellular transfections. STUDY DESIGN: Fe(3)O(4)-dextran-anti-β-HCG nanoparticles were synthesized by chemical coprecipitation. The conf...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044181/ https://www.ncbi.nlm.nih.gov/pubmed/21383853 http://dx.doi.org/10.2147/IJN.S13410 |
Sumario: | OBJECTIVE: To evaluate the feasibility of using magnetic iron oxide (Fe(3)O(4))-dextran-anti-β-human chorionic gonadotropin (HCG) nanoparticles as a gene vector for cellular transfections. STUDY DESIGN: Fe(3)O(4)-dextran-anti-β-HCG nanoparticles were synthesized by chemical coprecipitation. The configuration, diameter, and iron content of the nanoparticles were detected by transmission electron microscopy (TEM), light scatter, and atomic absorption spectrophotometry. A3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay was used to evaluate the cytotoxicity of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles. Enzyme-linked immunosorbent assay and indirect immunofluorescence were used to evaluate immunoreactivity. The efficiency of absorbing DNA and resisting deoxyribonuclease I (DNase I) digestion when bound to Fe(3)O(4)-dextran-anti-β-HCG nanoparticles was examined by agarose gel electrophoresis. The ability of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles to absorb heparanase antisense oligodeoxynucleotides (AS-ODN) nanoparticles in different cell lines was evaluated by flow cytometry. The tissue distribution of heparanase AS-ODN magnetic nanoparticles in choriocarcinoma tumors transplanted in nude mice was detected by atomic absorption spectrophotometry. RESULTS: TEM demonstrated that the shape of nanoparticles is irregular. Light scatter revealed nanoparticles with a mean diameter of 75.5 nm and an iron content of 37.5 μg/mL. No cytotoxicity was observed when the concentration of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles was <37.5 μg/mL. Fe(3)O(4)-dextran nanoparticles have a satisfactory potential to combine with β-HCG antibody. Agarose gel electrophoresis analysis of binding experiments showed that after treatment with sodium periodate, Fe(3)O(4)-dextran-anti-β-HCG nanoparticles have a satisfactory potential to absorb DNA, and the protection experiment showed that nanoparticles can effectively protect DNA from DNase I digestion. Aldehyde Fe(3)O(4)-dextran-anti-β-HCG nanoparticles can transfect reporter genes, and the transfection efficiency of these nanoparticles is greater than that of liposomes (P < 0.05). Fe(3)O(4)-dextran-anti-β-HCG nanoparticles can concentrate in choriocarcinoma cells and in transplanted choriocarcinoma tumors. CONCLUSIONS: The results confirm that Fe(3)O(4)-dextran-anti-β-HCG nanoparticles have potential as a secure, effective, and choriocarcinoma-specific targeting gene vector. |
---|