Cargando…

Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception

BACKGROUND: Human immunodeficiency virus type one (HIV-1) is the major pathogen that causes the acquired immune deficiency syndrome (AIDS). With the availability of large-scale protein-protein interaction (PPI) measurements, comparative network analysis can provide a promising way to study the host-...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Xiaoning, Yoon, Byung-Jun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044273/
https://www.ncbi.nlm.nih.gov/pubmed/21342548
http://dx.doi.org/10.1186/1471-2105-12-S1-S19
_version_ 1782198708113244160
author Qian, Xiaoning
Yoon, Byung-Jun
author_facet Qian, Xiaoning
Yoon, Byung-Jun
author_sort Qian, Xiaoning
collection PubMed
description BACKGROUND: Human immunodeficiency virus type one (HIV-1) is the major pathogen that causes the acquired immune deficiency syndrome (AIDS). With the availability of large-scale protein-protein interaction (PPI) measurements, comparative network analysis can provide a promising way to study the host-virus interactions and their functional significance in the pathogenesis of AIDS. Until now, there have been a large number of HIV studies based on various animal models. In this paper, we present a novel framework for studying the host-HIV interactions through comparative network analysis across different species. RESULTS: Based on the proposed framework, we test our hypothesis that HIV-1 attacks essential biological pathways that are conserved across species. We selected the Homo sapiens and Mus musculus PPI networks with the largest coverage among the PPI networks that are available from public databases. By using a local network alignment algorithm based on hidden Markov models (HMMs), we first identified the pathways that are conserved in both networks. Next, we analyzed the HIV-1 susceptibility of these pathways, in comparison with random pathways in the human PPI network. Our analysis shows that the conserved pathways have a significantly higher probability of being intercepted by HIV-1. Furthermore, Gene Ontology (GO) enrichment analysis shows that most of the enriched GO terms are related to signal transduction, which has been conjectured to be one of the major mechanisms targeted by HIV-1 for the takeover of the host cell. CONCLUSIONS: This proof-of-concept study clearly shows that the comparative analysis of PPI networks across different species can provide important insights into the host-HIV interactions and the detailed mechanisms of HIV-1. We expect that comparative multiple network analysis of various species that have different levels of susceptibility to similar lentiviruses may provide a very effective framework for generating novel, and experimentally verifiable hypotheses on the mechanisms of HIV-1. We believe that the proposed framework has the potential to expedite the elucidation of the important mechanisms of HIV-1, and ultimately, the discovery of novel anti-HIV drugs.
format Text
id pubmed-3044273
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30442732011-02-25 Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception Qian, Xiaoning Yoon, Byung-Jun BMC Bioinformatics Research BACKGROUND: Human immunodeficiency virus type one (HIV-1) is the major pathogen that causes the acquired immune deficiency syndrome (AIDS). With the availability of large-scale protein-protein interaction (PPI) measurements, comparative network analysis can provide a promising way to study the host-virus interactions and their functional significance in the pathogenesis of AIDS. Until now, there have been a large number of HIV studies based on various animal models. In this paper, we present a novel framework for studying the host-HIV interactions through comparative network analysis across different species. RESULTS: Based on the proposed framework, we test our hypothesis that HIV-1 attacks essential biological pathways that are conserved across species. We selected the Homo sapiens and Mus musculus PPI networks with the largest coverage among the PPI networks that are available from public databases. By using a local network alignment algorithm based on hidden Markov models (HMMs), we first identified the pathways that are conserved in both networks. Next, we analyzed the HIV-1 susceptibility of these pathways, in comparison with random pathways in the human PPI network. Our analysis shows that the conserved pathways have a significantly higher probability of being intercepted by HIV-1. Furthermore, Gene Ontology (GO) enrichment analysis shows that most of the enriched GO terms are related to signal transduction, which has been conjectured to be one of the major mechanisms targeted by HIV-1 for the takeover of the host cell. CONCLUSIONS: This proof-of-concept study clearly shows that the comparative analysis of PPI networks across different species can provide important insights into the host-HIV interactions and the detailed mechanisms of HIV-1. We expect that comparative multiple network analysis of various species that have different levels of susceptibility to similar lentiviruses may provide a very effective framework for generating novel, and experimentally verifiable hypotheses on the mechanisms of HIV-1. We believe that the proposed framework has the potential to expedite the elucidation of the important mechanisms of HIV-1, and ultimately, the discovery of novel anti-HIV drugs. BioMed Central 2011-02-15 /pmc/articles/PMC3044273/ /pubmed/21342548 http://dx.doi.org/10.1186/1471-2105-12-S1-S19 Text en Copyright ©2011 Qian and Yoon; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Qian, Xiaoning
Yoon, Byung-Jun
Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title_full Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title_fullStr Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title_full_unstemmed Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title_short Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception
title_sort comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to hiv-1 interception
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044273/
https://www.ncbi.nlm.nih.gov/pubmed/21342548
http://dx.doi.org/10.1186/1471-2105-12-S1-S19
work_keys_str_mv AT qianxiaoning comparativeanalysisofproteininteractionnetworksrevealsthatconservedpathwaysaresusceptibletohiv1interception
AT yoonbyungjun comparativeanalysisofproteininteractionnetworksrevealsthatconservedpathwaysaresusceptibletohiv1interception