Cargando…
An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supp...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045610/ https://www.ncbi.nlm.nih.gov/pubmed/20965966 http://dx.doi.org/10.1093/nar/gkq960 |
_version_ | 1782198855973994496 |
---|---|
author | Cui, Juan Chen, Yunbo Chou, Wen-Chi Sun, Liankun Chen, Li Suo, Jian Ni, Zhaohui Zhang, Ming Kong, Xiaoxia Hoffman, Lisabeth L. Kang, Jinsong Su, Yingying Olman, Victor Johnson, Darryl Tench, Daniel W. Amster, I. Jonathan Orlando, Ron Puett, David Li, Fan Xu, Ying |
author_facet | Cui, Juan Chen, Yunbo Chou, Wen-Chi Sun, Liankun Chen, Li Suo, Jian Ni, Zhaohui Zhang, Ming Kong, Xiaoxia Hoffman, Lisabeth L. Kang, Jinsong Su, Yingying Olman, Victor Johnson, Darryl Tench, Daniel W. Amster, I. Jonathan Orlando, Ron Puett, David Li, Fan Xu, Ying |
author_sort | Cui, Juan |
collection | PubMed |
description | This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development. |
format | Text |
id | pubmed-3045610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30456102011-02-28 An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer Cui, Juan Chen, Yunbo Chou, Wen-Chi Sun, Liankun Chen, Li Suo, Jian Ni, Zhaohui Zhang, Ming Kong, Xiaoxia Hoffman, Lisabeth L. Kang, Jinsong Su, Yingying Olman, Victor Johnson, Darryl Tench, Daniel W. Amster, I. Jonathan Orlando, Ron Puett, David Li, Fan Xu, Ying Nucleic Acids Res Computational Biology This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development. Oxford University Press 2011-03 2010-10-21 /pmc/articles/PMC3045610/ /pubmed/20965966 http://dx.doi.org/10.1093/nar/gkq960 Text en © The Author(s) 2010. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Computational Biology Cui, Juan Chen, Yunbo Chou, Wen-Chi Sun, Liankun Chen, Li Suo, Jian Ni, Zhaohui Zhang, Ming Kong, Xiaoxia Hoffman, Lisabeth L. Kang, Jinsong Su, Yingying Olman, Victor Johnson, Darryl Tench, Daniel W. Amster, I. Jonathan Orlando, Ron Puett, David Li, Fan Xu, Ying An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title | An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title_full | An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title_fullStr | An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title_full_unstemmed | An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title_short | An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
title_sort | integrated transcriptomic and computational analysis for biomarker identification in gastric cancer |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045610/ https://www.ncbi.nlm.nih.gov/pubmed/20965966 http://dx.doi.org/10.1093/nar/gkq960 |
work_keys_str_mv | AT cuijuan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chenyunbo anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chouwenchi anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT sunliankun anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chenli anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT suojian anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT nizhaohui anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT zhangming anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT kongxiaoxia anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT hoffmanlisabethl anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT kangjinsong anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT suyingying anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT olmanvictor anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT johnsondarryl anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT tenchdanielw anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT amsterijonathan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT orlandoron anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT puettdavid anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT lifan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT xuying anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT cuijuan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chenyunbo integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chouwenchi integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT sunliankun integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT chenli integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT suojian integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT nizhaohui integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT zhangming integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT kongxiaoxia integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT hoffmanlisabethl integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT kangjinsong integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT suyingying integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT olmanvictor integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT johnsondarryl integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT tenchdanielw integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT amsterijonathan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT orlandoron integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT puettdavid integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT lifan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer AT xuying integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer |