Cargando…

An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer

This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supp...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Juan, Chen, Yunbo, Chou, Wen-Chi, Sun, Liankun, Chen, Li, Suo, Jian, Ni, Zhaohui, Zhang, Ming, Kong, Xiaoxia, Hoffman, Lisabeth L., Kang, Jinsong, Su, Yingying, Olman, Victor, Johnson, Darryl, Tench, Daniel W., Amster, I. Jonathan, Orlando, Ron, Puett, David, Li, Fan, Xu, Ying
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045610/
https://www.ncbi.nlm.nih.gov/pubmed/20965966
http://dx.doi.org/10.1093/nar/gkq960
_version_ 1782198855973994496
author Cui, Juan
Chen, Yunbo
Chou, Wen-Chi
Sun, Liankun
Chen, Li
Suo, Jian
Ni, Zhaohui
Zhang, Ming
Kong, Xiaoxia
Hoffman, Lisabeth L.
Kang, Jinsong
Su, Yingying
Olman, Victor
Johnson, Darryl
Tench, Daniel W.
Amster, I. Jonathan
Orlando, Ron
Puett, David
Li, Fan
Xu, Ying
author_facet Cui, Juan
Chen, Yunbo
Chou, Wen-Chi
Sun, Liankun
Chen, Li
Suo, Jian
Ni, Zhaohui
Zhang, Ming
Kong, Xiaoxia
Hoffman, Lisabeth L.
Kang, Jinsong
Su, Yingying
Olman, Victor
Johnson, Darryl
Tench, Daniel W.
Amster, I. Jonathan
Orlando, Ron
Puett, David
Li, Fan
Xu, Ying
author_sort Cui, Juan
collection PubMed
description This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development.
format Text
id pubmed-3045610
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-30456102011-02-28 An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer Cui, Juan Chen, Yunbo Chou, Wen-Chi Sun, Liankun Chen, Li Suo, Jian Ni, Zhaohui Zhang, Ming Kong, Xiaoxia Hoffman, Lisabeth L. Kang, Jinsong Su, Yingying Olman, Victor Johnson, Darryl Tench, Daniel W. Amster, I. Jonathan Orlando, Ron Puett, David Li, Fan Xu, Ying Nucleic Acids Res Computational Biology This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development. Oxford University Press 2011-03 2010-10-21 /pmc/articles/PMC3045610/ /pubmed/20965966 http://dx.doi.org/10.1093/nar/gkq960 Text en © The Author(s) 2010. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Computational Biology
Cui, Juan
Chen, Yunbo
Chou, Wen-Chi
Sun, Liankun
Chen, Li
Suo, Jian
Ni, Zhaohui
Zhang, Ming
Kong, Xiaoxia
Hoffman, Lisabeth L.
Kang, Jinsong
Su, Yingying
Olman, Victor
Johnson, Darryl
Tench, Daniel W.
Amster, I. Jonathan
Orlando, Ron
Puett, David
Li, Fan
Xu, Ying
An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title_full An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title_fullStr An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title_full_unstemmed An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title_short An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
title_sort integrated transcriptomic and computational analysis for biomarker identification in gastric cancer
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045610/
https://www.ncbi.nlm.nih.gov/pubmed/20965966
http://dx.doi.org/10.1093/nar/gkq960
work_keys_str_mv AT cuijuan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chenyunbo anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chouwenchi anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT sunliankun anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chenli anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT suojian anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT nizhaohui anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT zhangming anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT kongxiaoxia anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT hoffmanlisabethl anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT kangjinsong anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT suyingying anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT olmanvictor anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT johnsondarryl anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT tenchdanielw anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT amsterijonathan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT orlandoron anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT puettdavid anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT lifan anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT xuying anintegratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT cuijuan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chenyunbo integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chouwenchi integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT sunliankun integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT chenli integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT suojian integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT nizhaohui integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT zhangming integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT kongxiaoxia integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT hoffmanlisabethl integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT kangjinsong integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT suyingying integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT olmanvictor integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT johnsondarryl integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT tenchdanielw integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT amsterijonathan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT orlandoron integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT puettdavid integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT lifan integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer
AT xuying integratedtranscriptomicandcomputationalanalysisforbiomarkeridentificationingastriccancer