Cargando…
The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana
BACKGROUND: The leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045891/ https://www.ncbi.nlm.nih.gov/pubmed/21329528 http://dx.doi.org/10.1186/1471-2229-11-35 |
_version_ | 1782198878738579456 |
---|---|
author | Jin, Biao Wang, Li Wang, Jing Jiang, Ke-Zhen Wang, Yang Jiang, Xiao-Xue Ni, Cheng-Yang Wang, Yu-Long Teng, Nian-Jun |
author_facet | Jin, Biao Wang, Li Wang, Jing Jiang, Ke-Zhen Wang, Yang Jiang, Xiao-Xue Ni, Cheng-Yang Wang, Yu-Long Teng, Nian-Jun |
author_sort | Jin, Biao |
collection | PubMed |
description | BACKGROUND: The leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on the structural and biochemical responses to warming. However, such information is very important to better understand the plant responses to global warming. Therefore, we grew Arabidopsis thaliana at the three day/night temperatures of 23/18°C (ambient temperature), 25.5/20.5°C (elevated by 2.5°C) and 28/23°C (elevated by 5°C) to simulate the middle and the upper projected warming expected within the 21st century for this purpose. RESULTS: The 28/23°C treatment significantly reduced the life span, total biomass and total weight of seeds compared with the other two temperatures. Among the three temperature regimes, the concentrations of starch, chlorophyll, and proline were the lowest at 28/23°C, whereas the total weight of seeds, concentrations of chlorophyll and proline, stomatal density (SD), stomatal conductance (g(s)), net CO(2 )assimilation rate (A) and transpiration rate (E) were the highest at 25.5/20.5°C. Furthermore, the number of chloroplasts per cell and mitochondrial size were highest at 25.5/20.5°C and lowest at 28/23°C. CONCLUSIONS: The conditions whereby the temperature was increased by 2.5°C were advantageous for Arabidopsis. However, a rise of 5°C produced negative effects, suggesting that lower levels of warming may benefit plants, especially those which belong to the same functional group as Arabidopsis, whereas higher levels of warming may produce negative affects. In addition, the increase in A under moderately warm conditions may be attributed to the increase in SD, chlorophyll content, and number of chloroplasts. Furthermore, starch accumulation in chloroplasts may be the main factor influencing chloroplast ultrastructure, and elevated temperature regulates plant respiration by probably affecting mitochondrial size. Finally, high SOD and CAT activities may enable plants grown at elevated temperatures to exhibit relatively high tolerance to temperature stress, thus alleviating the harmful effects of superoxide anion radicals and hydrogen peroxide. |
format | Text |
id | pubmed-3045891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30458912011-03-01 The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana Jin, Biao Wang, Li Wang, Jing Jiang, Ke-Zhen Wang, Yang Jiang, Xiao-Xue Ni, Cheng-Yang Wang, Yu-Long Teng, Nian-Jun BMC Plant Biol Research Article BACKGROUND: The leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on the structural and biochemical responses to warming. However, such information is very important to better understand the plant responses to global warming. Therefore, we grew Arabidopsis thaliana at the three day/night temperatures of 23/18°C (ambient temperature), 25.5/20.5°C (elevated by 2.5°C) and 28/23°C (elevated by 5°C) to simulate the middle and the upper projected warming expected within the 21st century for this purpose. RESULTS: The 28/23°C treatment significantly reduced the life span, total biomass and total weight of seeds compared with the other two temperatures. Among the three temperature regimes, the concentrations of starch, chlorophyll, and proline were the lowest at 28/23°C, whereas the total weight of seeds, concentrations of chlorophyll and proline, stomatal density (SD), stomatal conductance (g(s)), net CO(2 )assimilation rate (A) and transpiration rate (E) were the highest at 25.5/20.5°C. Furthermore, the number of chloroplasts per cell and mitochondrial size were highest at 25.5/20.5°C and lowest at 28/23°C. CONCLUSIONS: The conditions whereby the temperature was increased by 2.5°C were advantageous for Arabidopsis. However, a rise of 5°C produced negative effects, suggesting that lower levels of warming may benefit plants, especially those which belong to the same functional group as Arabidopsis, whereas higher levels of warming may produce negative affects. In addition, the increase in A under moderately warm conditions may be attributed to the increase in SD, chlorophyll content, and number of chloroplasts. Furthermore, starch accumulation in chloroplasts may be the main factor influencing chloroplast ultrastructure, and elevated temperature regulates plant respiration by probably affecting mitochondrial size. Finally, high SOD and CAT activities may enable plants grown at elevated temperatures to exhibit relatively high tolerance to temperature stress, thus alleviating the harmful effects of superoxide anion radicals and hydrogen peroxide. BioMed Central 2011-02-18 /pmc/articles/PMC3045891/ /pubmed/21329528 http://dx.doi.org/10.1186/1471-2229-11-35 Text en Copyright ©2011 Jin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jin, Biao Wang, Li Wang, Jing Jiang, Ke-Zhen Wang, Yang Jiang, Xiao-Xue Ni, Cheng-Yang Wang, Yu-Long Teng, Nian-Jun The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title | The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title_full | The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title_fullStr | The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title_full_unstemmed | The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title_short | The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana |
title_sort | effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in arabidopsis thaliana |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045891/ https://www.ncbi.nlm.nih.gov/pubmed/21329528 http://dx.doi.org/10.1186/1471-2229-11-35 |
work_keys_str_mv | AT jinbiao theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangli theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangjing theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT jiangkezhen theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangyang theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT jiangxiaoxue theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT nichengyang theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangyulong theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT tengnianjun theeffectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT jinbiao effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangli effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangjing effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT jiangkezhen effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangyang effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT jiangxiaoxue effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT nichengyang effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT wangyulong effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana AT tengnianjun effectofexperimentalwarmingonleaffunctionaltraitsleafstructureandleafbiochemistryinarabidopsisthaliana |