Cargando…

Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing

BACKGROUND: A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an int...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Heesun, Lee, Hyojin, Fejes, Anthony P, Baillie, David L, Koo, Hyeon-Sook, Jones, Steven JM
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045954/
https://www.ncbi.nlm.nih.gov/pubmed/21303547
http://dx.doi.org/10.1186/1756-0500-4-34
Descripción
Sumario:BACKGROUND: A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension. FINDINGS: Here, we investigated global transcriptional responses of aak-2 mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in C. elegans. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of aak-2 and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in C. elegans in response to oxidative stress both in the presence and absence of AAK-2. CONCLUSIONS: The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of C. elegans against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.