Cargando…
Reconstructing Stimuli from the Spike Times of Leaky Integrate and Fire Neurons
Reconstructing stimuli from the spike trains of neurons is an important approach for understanding the neural code. One of the difficulties associated with this task is that signals which are varying continuously in time are encoded into sequences of discrete events or spikes. An important problem i...
Autores principales: | Gerwinn, Sebastian, Macke, Jakob H., Bethge, Matthias |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046364/ https://www.ncbi.nlm.nih.gov/pubmed/21390287 http://dx.doi.org/10.3389/fnins.2011.00001 |
Ejemplares similares
-
Bayesian Population Decoding of Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2009) -
Bayesian Inference for Generalized Linear Models for Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2010) -
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron
por: Ambard, Maxime, et al.
Publicado: (2012) -
Rate Dynamics of Leaky Integrate-and-Fire Neurons with Strong Synapses
por: Nordlie, Eilen, et al.
Publicado: (2010)