Cargando…
Novel genes exhibit distinct patterns of function acquisition and network integration
BACKGROUND: Genes are created by a variety of evolutionary processes, some of which generate duplicate copies of an entire gene, while others rearrange pre-existing genetic elements or co-opt previously non-coding sequence to create genes with 'novel' sequences. These novel genes are thoug...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046487/ https://www.ncbi.nlm.nih.gov/pubmed/21187012 http://dx.doi.org/10.1186/gb-2010-11-12-r127 |
_version_ | 1782198962979078144 |
---|---|
author | Capra, John A Pollard, Katherine S Singh, Mona |
author_facet | Capra, John A Pollard, Katherine S Singh, Mona |
author_sort | Capra, John A |
collection | PubMed |
description | BACKGROUND: Genes are created by a variety of evolutionary processes, some of which generate duplicate copies of an entire gene, while others rearrange pre-existing genetic elements or co-opt previously non-coding sequence to create genes with 'novel' sequences. These novel genes are thought to contribute to distinct phenotypes that distinguish organisms. The creation, evolution, and function of duplicated genes are well-studied; however, the genesis and early evolution of novel genes are not well-characterized. We developed a computational approach to investigate these issues by integrating genome-wide comparative phylogenetic analysis with functional and interaction data derived from small-scale and high-throughput experiments. RESULTS: We examine the function and evolution of new genes in the yeast Saccharomyces cerevisiae. We observed significant differences in the functional attributes and interactions of genes created at different times and by different mechanisms. Novel genes are initially less integrated into cellular networks than duplicate genes, but they appear to gain functions and interactions more quickly than duplicates. Recently created duplicated genes show evidence of adapting existing functions to environmental changes, while young novel genes do not exhibit enrichment for any particular functions. Finally, we found a significant preference for genes to interact with other genes of similar age and origin. CONCLUSIONS: Our results suggest a strong relationship between how and when genes are created and the roles they play in the cell. Overall, genes tend to become more integrated into the functional networks of the cell with time, but the dynamics of this process differ significantly between duplicate and novel genes. |
format | Text |
id | pubmed-3046487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30464872011-03-01 Novel genes exhibit distinct patterns of function acquisition and network integration Capra, John A Pollard, Katherine S Singh, Mona Genome Biol Research BACKGROUND: Genes are created by a variety of evolutionary processes, some of which generate duplicate copies of an entire gene, while others rearrange pre-existing genetic elements or co-opt previously non-coding sequence to create genes with 'novel' sequences. These novel genes are thought to contribute to distinct phenotypes that distinguish organisms. The creation, evolution, and function of duplicated genes are well-studied; however, the genesis and early evolution of novel genes are not well-characterized. We developed a computational approach to investigate these issues by integrating genome-wide comparative phylogenetic analysis with functional and interaction data derived from small-scale and high-throughput experiments. RESULTS: We examine the function and evolution of new genes in the yeast Saccharomyces cerevisiae. We observed significant differences in the functional attributes and interactions of genes created at different times and by different mechanisms. Novel genes are initially less integrated into cellular networks than duplicate genes, but they appear to gain functions and interactions more quickly than duplicates. Recently created duplicated genes show evidence of adapting existing functions to environmental changes, while young novel genes do not exhibit enrichment for any particular functions. Finally, we found a significant preference for genes to interact with other genes of similar age and origin. CONCLUSIONS: Our results suggest a strong relationship between how and when genes are created and the roles they play in the cell. Overall, genes tend to become more integrated into the functional networks of the cell with time, but the dynamics of this process differ significantly between duplicate and novel genes. BioMed Central 2010 2010-12-27 /pmc/articles/PMC3046487/ /pubmed/21187012 http://dx.doi.org/10.1186/gb-2010-11-12-r127 Text en Copyright ©2010 Capra et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Capra, John A Pollard, Katherine S Singh, Mona Novel genes exhibit distinct patterns of function acquisition and network integration |
title | Novel genes exhibit distinct patterns of function acquisition and network integration |
title_full | Novel genes exhibit distinct patterns of function acquisition and network integration |
title_fullStr | Novel genes exhibit distinct patterns of function acquisition and network integration |
title_full_unstemmed | Novel genes exhibit distinct patterns of function acquisition and network integration |
title_short | Novel genes exhibit distinct patterns of function acquisition and network integration |
title_sort | novel genes exhibit distinct patterns of function acquisition and network integration |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046487/ https://www.ncbi.nlm.nih.gov/pubmed/21187012 http://dx.doi.org/10.1186/gb-2010-11-12-r127 |
work_keys_str_mv | AT caprajohna novelgenesexhibitdistinctpatternsoffunctionacquisitionandnetworkintegration AT pollardkatherines novelgenesexhibitdistinctpatternsoffunctionacquisitionandnetworkintegration AT singhmona novelgenesexhibitdistinctpatternsoffunctionacquisitionandnetworkintegration |