Cargando…
Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP/PAC1 receptor pathway has a role in human psychological stress responses, such as posttraumatic stress disorder (PTSD). In heavily traumatized...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046811/ https://www.ncbi.nlm.nih.gov/pubmed/21350482 http://dx.doi.org/10.1038/nature09856 |
Sumario: | Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP/PAC1 receptor pathway has a role in human psychological stress responses, such as posttraumatic stress disorder (PTSD). In heavily traumatized subjects, we find a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females (N=64, replication N=74, p<0.005). Using a tag-SNP genetic approach (44 single nucleotide polymorphisms, SNPs) spanning the PACAP (ADCYAP1) and PAC1 (ADCYAP1R1) genes, we find a sex-specific association with PTSD. rs2267735, a SNP in a putative estrogen response element within ADCYAP1R1, predicts PTSD diagnosis and symptoms in females only (combined initial and replication samples: N=1237; p<2x10(−)5). This SNP also associates with fear discrimination and with ADCYAP1R1 mRNA expression. Methylation of ADCYAP1R1 is also associated with PTSD (p < 0.001). Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP/PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via estrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD. |
---|