Cargando…
RIG-I– and MDA5-Initiated Innate Immunity Linked With Adaptive Immunity Accelerates β-Cell Death in Fulminant Type 1 Diabetes
OBJECTIVE: The contribution of innate immunity responsible for aggressive β-cell destruction in human fulminant type 1 diabetes is unclear. RESEARCH DESIGN AND METHODS: Islet cell expression of Toll-like receptors (TLRs), cytoplasmic retinoic acid–inducible gene I (RIG-I)-like receptors, downstream...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046849/ https://www.ncbi.nlm.nih.gov/pubmed/21289206 http://dx.doi.org/10.2337/db10-0795 |
Sumario: | OBJECTIVE: The contribution of innate immunity responsible for aggressive β-cell destruction in human fulminant type 1 diabetes is unclear. RESEARCH DESIGN AND METHODS: Islet cell expression of Toll-like receptors (TLRs), cytoplasmic retinoic acid–inducible gene I (RIG-I)-like receptors, downstream innate immune markers, adaptive immune mediators, and apoptotic markers was studied in three autopsied pancreata obtained 2 to 5 days after onset of fulminant type 1 diabetes. RESULTS: RIG-I was strongly expressed in β-cells in all three pancreata infected with enterovirus. Melanoma differentiation–associated gene-5 was hyperexpressed in islet cells, including β- and α-cells. TLR3 and TLR4 were expressed in mononuclear cells that infiltrated islets. Interferon (IFN)-α and IFN-β were strongly expressed in islet cells. Major histocompatibility complex (MHC)-class I, IFN-γ, interleukin-18, and CXC motif ligand 10 were expressed and colocalized in affected islets. CD11c+ MHC-class II+ dendritic cells and macrophage subsets infiltrated most islets and showed remarkable features of phagocytosis of islet cell debris. CD4+ forkhead box P3+ regulatory T cells were not observed in and around the affected islets. Mononuclear cells expressed the Fas ligand and infiltrated most Fas-expressing islets. Retinoic acid–receptor responder 3 and activated caspases 8, 9, and 3 were preferentially expressed in β-cells. Serum levels of IFN-γ were markedly increased in patients with fulminant type 1 diabetes. CONCLUSIONS: These findings demonstrate the presence of specific innate immune responses to enterovirus infection connected with enhanced adoptive immune pathways responsible for aggressive β-cell toxicity in fulminant type 1 diabetes. |
---|