Cargando…

Index-ion Triggered MS2 Ion Quantification: A Novel Proteomics Approach for Reproducible Detection and Quantification of Targeted Proteins in Complex Mixtures

Biomedical research requires protein detection technology that is not only sensitive and quantitative, but that can reproducibly measure any set of proteins in a biological system in a high throughput manner. Here we report the development and application of a targeted proteomics platform termed ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Wei, Luo, Jie, Robinson, Max, Eng, Jimmy, Aebersold, Ruedi, Ranish, Jeffrey
Formato: Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047164/
https://www.ncbi.nlm.nih.gov/pubmed/21169564
http://dx.doi.org/10.1074/mcp.M110.005611
Descripción
Sumario:Biomedical research requires protein detection technology that is not only sensitive and quantitative, but that can reproducibly measure any set of proteins in a biological system in a high throughput manner. Here we report the development and application of a targeted proteomics platform termed index-ion triggered MS2 ion quantification (iMSTIQ) that allows reproducible and accurate peptide quantification in complex mixtures. The key feature of iMSTIQ is an approach called index-ion triggered analysis (ITA) that permits the reproducible acquisition of full MS2 spectra of targeted peptides independent of their ion intensities. Accurate quantification is achieved by comparing the relative intensities of multiple pairs of fragment ions derived from isobaric targeted peptides during MS2 analysis. Importantly, the method takes advantage of the favorable performance characteristics of the LTQ-Orbitrap, which include high mass accuracy, resolution, and throughput. As such it provides an attractive targeted proteomics tool to meet the demands of systems biology research and biomarker studies.