Cargando…

Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber

We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionalit...

Descripción completa

Detalles Bibliográficos
Autores principales: Rativa, Diego, Vohnsen, Brian
Formato: Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047360/
https://www.ncbi.nlm.nih.gov/pubmed/21412460
http://dx.doi.org/10.1364/BOE.2.000543
_version_ 1782199031638786048
author Rativa, Diego
Vohnsen, Brian
author_facet Rativa, Diego
Vohnsen, Brian
author_sort Rativa, Diego
collection PubMed
description We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionality at different managed waveguide parameters. The crystal fiber method is a hybrid tool between theory and a real biological sample and a valuable addition as a retina model for real eye simulations.
format Text
id pubmed-3047360
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-30473602011-03-16 Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber Rativa, Diego Vohnsen, Brian Biomed Opt Express Vision, Color, and Visual Optics We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionality at different managed waveguide parameters. The crystal fiber method is a hybrid tool between theory and a real biological sample and a valuable addition as a retina model for real eye simulations. Optical Society of America 2011-02-11 /pmc/articles/PMC3047360/ /pubmed/21412460 http://dx.doi.org/10.1364/BOE.2.000543 Text en ©2011 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.
spellingShingle Vision, Color, and Visual Optics
Rativa, Diego
Vohnsen, Brian
Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title_full Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title_fullStr Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title_full_unstemmed Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title_short Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
title_sort simulating human photoreceptor optics using a liquid-filled photonic crystal fiber
topic Vision, Color, and Visual Optics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047360/
https://www.ncbi.nlm.nih.gov/pubmed/21412460
http://dx.doi.org/10.1364/BOE.2.000543
work_keys_str_mv AT rativadiego simulatinghumanphotoreceptoropticsusingaliquidfilledphotoniccrystalfiber
AT vohnsenbrian simulatinghumanphotoreceptoropticsusingaliquidfilledphotoniccrystalfiber