Cargando…
A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/ https://www.ncbi.nlm.nih.gov/pubmed/21399686 http://dx.doi.org/10.1371/journal.pone.0017468 |
_version_ | 1782199042552365056 |
---|---|
author | Lee, Vernon J. Yap, Jonathan Cook, Alex R. Tan, Chi Hsien Loh, Jin-Phang Koh, Wee-Hong Lim, Elizabeth A. S. Liaw, Jasper C. W. Chew, Janet S. W. Hossain, Iqbal Chan, Ka Wei Ting, Pei-Jun Ng, Sock-Hoon Gao, Qiuhan Kelly, Paul M. Chen, Mark I. Tambyah, Paul A. Tan, Boon Huan |
author_facet | Lee, Vernon J. Yap, Jonathan Cook, Alex R. Tan, Chi Hsien Loh, Jin-Phang Koh, Wee-Hong Lim, Elizabeth A. S. Liaw, Jasper C. W. Chew, Janet S. W. Hossain, Iqbal Chan, Ka Wei Ting, Pei-Jun Ng, Sock-Hoon Gao, Qiuhan Kelly, Paul M. Chen, Mark I. Tambyah, Paul A. Tan, Boon Huan |
author_sort | Lee, Vernon J. |
collection | PubMed |
description | INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. RESULTS: 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. CONCLUSIONS: Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI. |
format | Text |
id | pubmed-3047544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30475442011-03-11 A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore Lee, Vernon J. Yap, Jonathan Cook, Alex R. Tan, Chi Hsien Loh, Jin-Phang Koh, Wee-Hong Lim, Elizabeth A. S. Liaw, Jasper C. W. Chew, Janet S. W. Hossain, Iqbal Chan, Ka Wei Ting, Pei-Jun Ng, Sock-Hoon Gao, Qiuhan Kelly, Paul M. Chen, Mark I. Tambyah, Paul A. Tan, Boon Huan PLoS One Research Article INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. RESULTS: 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. CONCLUSIONS: Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI. Public Library of Science 2011-03-02 /pmc/articles/PMC3047544/ /pubmed/21399686 http://dx.doi.org/10.1371/journal.pone.0017468 Text en Lee et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lee, Vernon J. Yap, Jonathan Cook, Alex R. Tan, Chi Hsien Loh, Jin-Phang Koh, Wee-Hong Lim, Elizabeth A. S. Liaw, Jasper C. W. Chew, Janet S. W. Hossain, Iqbal Chan, Ka Wei Ting, Pei-Jun Ng, Sock-Hoon Gao, Qiuhan Kelly, Paul M. Chen, Mark I. Tambyah, Paul A. Tan, Boon Huan A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore |
title | A Clinical Diagnostic Model for Predicting Influenza among Young
Adult Military Personnel with Febrile Respiratory Illness in
Singapore |
title_full | A Clinical Diagnostic Model for Predicting Influenza among Young
Adult Military Personnel with Febrile Respiratory Illness in
Singapore |
title_fullStr | A Clinical Diagnostic Model for Predicting Influenza among Young
Adult Military Personnel with Febrile Respiratory Illness in
Singapore |
title_full_unstemmed | A Clinical Diagnostic Model for Predicting Influenza among Young
Adult Military Personnel with Febrile Respiratory Illness in
Singapore |
title_short | A Clinical Diagnostic Model for Predicting Influenza among Young
Adult Military Personnel with Febrile Respiratory Illness in
Singapore |
title_sort | clinical diagnostic model for predicting influenza among young
adult military personnel with febrile respiratory illness in
singapore |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/ https://www.ncbi.nlm.nih.gov/pubmed/21399686 http://dx.doi.org/10.1371/journal.pone.0017468 |
work_keys_str_mv | AT leevernonj aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT yapjonathan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT cookalexr aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tanchihsien aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT lohjinphang aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kohweehong aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT limelizabethas aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT liawjaspercw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chewjanetsw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT hossainiqbal aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chankawei aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tingpeijun aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT ngsockhoon aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT gaoqiuhan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kellypaulm aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chenmarki aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tambyahpaula aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tanboonhuan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT leevernonj clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT yapjonathan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT cookalexr clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tanchihsien clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT lohjinphang clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kohweehong clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT limelizabethas clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT liawjaspercw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chewjanetsw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT hossainiqbal clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chankawei clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tingpeijun clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT ngsockhoon clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT gaoqiuhan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kellypaulm clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chenmarki clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tambyahpaula clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT tanboonhuan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore |