Cargando…

A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore

INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Vernon J., Yap, Jonathan, Cook, Alex R., Tan, Chi Hsien, Loh, Jin-Phang, Koh, Wee-Hong, Lim, Elizabeth A. S., Liaw, Jasper C. W., Chew, Janet S. W., Hossain, Iqbal, Chan, Ka Wei, Ting, Pei-Jun, Ng, Sock-Hoon, Gao, Qiuhan, Kelly, Paul M., Chen, Mark I., Tambyah, Paul A., Tan, Boon Huan
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/
https://www.ncbi.nlm.nih.gov/pubmed/21399686
http://dx.doi.org/10.1371/journal.pone.0017468
_version_ 1782199042552365056
author Lee, Vernon J.
Yap, Jonathan
Cook, Alex R.
Tan, Chi Hsien
Loh, Jin-Phang
Koh, Wee-Hong
Lim, Elizabeth A. S.
Liaw, Jasper C. W.
Chew, Janet S. W.
Hossain, Iqbal
Chan, Ka Wei
Ting, Pei-Jun
Ng, Sock-Hoon
Gao, Qiuhan
Kelly, Paul M.
Chen, Mark I.
Tambyah, Paul A.
Tan, Boon Huan
author_facet Lee, Vernon J.
Yap, Jonathan
Cook, Alex R.
Tan, Chi Hsien
Loh, Jin-Phang
Koh, Wee-Hong
Lim, Elizabeth A. S.
Liaw, Jasper C. W.
Chew, Janet S. W.
Hossain, Iqbal
Chan, Ka Wei
Ting, Pei-Jun
Ng, Sock-Hoon
Gao, Qiuhan
Kelly, Paul M.
Chen, Mark I.
Tambyah, Paul A.
Tan, Boon Huan
author_sort Lee, Vernon J.
collection PubMed
description INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. RESULTS: 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. CONCLUSIONS: Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.
format Text
id pubmed-3047544
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-30475442011-03-11 A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore Lee, Vernon J. Yap, Jonathan Cook, Alex R. Tan, Chi Hsien Loh, Jin-Phang Koh, Wee-Hong Lim, Elizabeth A. S. Liaw, Jasper C. W. Chew, Janet S. W. Hossain, Iqbal Chan, Ka Wei Ting, Pei-Jun Ng, Sock-Hoon Gao, Qiuhan Kelly, Paul M. Chen, Mark I. Tambyah, Paul A. Tan, Boon Huan PLoS One Research Article INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. METHODS: Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. RESULTS: 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. CONCLUSIONS: Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI. Public Library of Science 2011-03-02 /pmc/articles/PMC3047544/ /pubmed/21399686 http://dx.doi.org/10.1371/journal.pone.0017468 Text en Lee et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lee, Vernon J.
Yap, Jonathan
Cook, Alex R.
Tan, Chi Hsien
Loh, Jin-Phang
Koh, Wee-Hong
Lim, Elizabeth A. S.
Liaw, Jasper C. W.
Chew, Janet S. W.
Hossain, Iqbal
Chan, Ka Wei
Ting, Pei-Jun
Ng, Sock-Hoon
Gao, Qiuhan
Kelly, Paul M.
Chen, Mark I.
Tambyah, Paul A.
Tan, Boon Huan
A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title_full A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title_fullStr A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title_full_unstemmed A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title_short A Clinical Diagnostic Model for Predicting Influenza among Young Adult Military Personnel with Febrile Respiratory Illness in Singapore
title_sort clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in singapore
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/
https://www.ncbi.nlm.nih.gov/pubmed/21399686
http://dx.doi.org/10.1371/journal.pone.0017468
work_keys_str_mv AT leevernonj aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT yapjonathan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT cookalexr aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tanchihsien aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT lohjinphang aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kohweehong aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT limelizabethas aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT liawjaspercw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chewjanetsw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT hossainiqbal aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chankawei aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tingpeijun aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT ngsockhoon aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT gaoqiuhan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kellypaulm aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chenmarki aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tambyahpaula aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tanboonhuan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT leevernonj clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT yapjonathan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT cookalexr clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tanchihsien clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT lohjinphang clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kohweehong clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT limelizabethas clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT liawjaspercw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chewjanetsw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT hossainiqbal clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chankawei clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tingpeijun clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT ngsockhoon clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT gaoqiuhan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kellypaulm clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chenmarki clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tambyahpaula clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT tanboonhuan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore