Cargando…
Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model
The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specifi...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048172/ https://www.ncbi.nlm.nih.gov/pubmed/21407827 http://dx.doi.org/10.1371/journal.pone.0017594 |
_version_ | 1782199127116873728 |
---|---|
author | Stamatakos, Georgios S. Georgiadi, Eleni C. Graf, Norbert Kolokotroni, Eleni A. Dionysiou, Dimitra D. |
author_facet | Stamatakos, Georgios S. Georgiadi, Eleni C. Graf, Norbert Kolokotroni, Eleni A. Dionysiou, Dimitra D. |
author_sort | Stamatakos, Georgios S. |
collection | PubMed |
description | The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/GPOH clinical trial. A sorting of the model's parameters according to the magnitude of their effect on the output has unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-induced tumor shrinkage and on the tumor's growth rate are discussed. A real clinical case of nephroblastoma has served as a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of possible solutions to the clinical adaptation problem. |
format | Text |
id | pubmed-3048172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30481722011-03-15 Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model Stamatakos, Georgios S. Georgiadi, Eleni C. Graf, Norbert Kolokotroni, Eleni A. Dionysiou, Dimitra D. PLoS One Research Article The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/GPOH clinical trial. A sorting of the model's parameters according to the magnitude of their effect on the output has unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-induced tumor shrinkage and on the tumor's growth rate are discussed. A real clinical case of nephroblastoma has served as a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of possible solutions to the clinical adaptation problem. Public Library of Science 2011-03-03 /pmc/articles/PMC3048172/ /pubmed/21407827 http://dx.doi.org/10.1371/journal.pone.0017594 Text en Stamatakos et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Stamatakos, Georgios S. Georgiadi, Eleni C. Graf, Norbert Kolokotroni, Eleni A. Dionysiou, Dimitra D. Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title | Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title_full | Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title_fullStr | Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title_full_unstemmed | Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title_short | Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model |
title_sort | exploiting clinical trial data drastically narrows the window of possible solutions to the problem of clinical adaptation of a multiscale cancer model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048172/ https://www.ncbi.nlm.nih.gov/pubmed/21407827 http://dx.doi.org/10.1371/journal.pone.0017594 |
work_keys_str_mv | AT stamatakosgeorgioss exploitingclinicaltrialdatadrasticallynarrowsthewindowofpossiblesolutionstotheproblemofclinicaladaptationofamultiscalecancermodel AT georgiadielenic exploitingclinicaltrialdatadrasticallynarrowsthewindowofpossiblesolutionstotheproblemofclinicaladaptationofamultiscalecancermodel AT grafnorbert exploitingclinicaltrialdatadrasticallynarrowsthewindowofpossiblesolutionstotheproblemofclinicaladaptationofamultiscalecancermodel AT kolokotronielenia exploitingclinicaltrialdatadrasticallynarrowsthewindowofpossiblesolutionstotheproblemofclinicaladaptationofamultiscalecancermodel AT dionysioudimitrad exploitingclinicaltrialdatadrasticallynarrowsthewindowofpossiblesolutionstotheproblemofclinicaladaptationofamultiscalecancermodel |