Cargando…

Defining eye-fixation sequences across individuals and tasks: the Binocular-Individual Threshold (BIT) algorithm

We propose a new fully automated velocity-based algorithm to identify fixations from eye-movement records of both eyes, with individual-specific thresholds. The algorithm is based on robust minimum determinant covariance estimators (MDC) and control chart procedures, and is conceptually simple and c...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Lans, Ralf, Wedel, Michel, Pieters, Rik
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048294/
https://www.ncbi.nlm.nih.gov/pubmed/21287116
http://dx.doi.org/10.3758/s13428-010-0031-2
Descripción
Sumario:We propose a new fully automated velocity-based algorithm to identify fixations from eye-movement records of both eyes, with individual-specific thresholds. The algorithm is based on robust minimum determinant covariance estimators (MDC) and control chart procedures, and is conceptually simple and computationally attractive. To determine fixations, it uses velocity thresholds based on the natural within-fixation variability of both eyes. It improves over existing approaches by automatically identifying fixation thresholds that are specific to (a) both eyes, (b) x- and y- directions, (c) tasks, and (d) individuals. We applied the proposed Binocular-Individual Threshold (BIT) algorithm to two large datasets collected on eye-trackers with different sampling frequencies, and compute descriptive statistics of fixations for larger samples of individuals across a variety of tasks, including reading, scene viewing, and search on supermarket shelves. Our analysis shows that there are considerable differences in the characteristics of fixations not only between these tasks, but also between individuals.