Cargando…

Association between Sex-Biased Gene Expression and Mutations with Sex-Specific Phenotypic Consequences in Drosophila

Genome-wide mRNA transcription profiles reveal widespread molecular sexual dimorphism or “sex-biased” gene expression, yet the relationship between molecular and phenotypic sexual dimorphism remains unclear. A major unresolved question is whether sex-biased genes typically perform male- and female-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Connallon, Tim, Clark, Andrew G.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048362/
https://www.ncbi.nlm.nih.gov/pubmed/21292631
http://dx.doi.org/10.1093/gbe/evr004
Descripción
Sumario:Genome-wide mRNA transcription profiles reveal widespread molecular sexual dimorphism or “sex-biased” gene expression, yet the relationship between molecular and phenotypic sexual dimorphism remains unclear. A major unresolved question is whether sex-biased genes typically perform male- and female-specific functions (whether these genes have sex-biased phenotypic or fitness consequences) or have similar functional importance for both sexes. To elucidate the relationship between sex-biased transcription and sex-biased fitness consequences, we analyzed a large data set of lethal, visible, and sterile mutations that have been mapped to the Drosophila melanogaster genome. The data permitted us to classify genes according to their sex-specific mutational effects and to infer the relationship between sex-biased transcription level and sex-specific fitness consequences. We find that mutations in female-biased genes are (on average) more deleterious to females than to males and that mutations in male-biased genes tend to be more deleterious to males than to females. Nevertheless, mutations in most sex-biased genes have similar phenotypic consequences for both sexes, which suggests that sex-biased transcription is not necessarily associated with functional genetic differentiation between males and females. These results have interesting implications for the evolution of sexual dimorphism and sex-specific adaptation.