Cargando…
Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi
BACKGROUND: Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed. RESULTS: In this study, we evaluated gen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048544/ https://www.ncbi.nlm.nih.gov/pubmed/21310019 http://dx.doi.org/10.1186/1471-2164-12-103 |
Sumario: | BACKGROUND: Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed. RESULTS: In this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP) information, by whole-genome sequencing using a Genome Analyzer II. A total of 64.2 Gb of sequence was generated, of which 86% of the obtained reads were successfully mapped to the reference sequence (Btau 4.0) with BWA. On an average, 93% of the genome was covered by the reads and the number of mapped reads corresponded to 15.8-fold coverage across the covered region. From these data, we identified 6.3 million SNPs, of which more than 5.5 million (87%) were found to be new. Out of the SNPs annotated in the bovine sequence assembly, 20,432 were found in protein-coding regions containing 11,713 nonsynonymous SNPs in 4,643 genes. Furthermore, phylogenetic analysis using sequence data from 10 genes (more than 10 kbp) showed that Kuchinoshima-Ushi is clearly distinct from European domestic breeds of cattle. CONCLUSIONS: These results provide a framework for further genetic studies in the Kuchinoshima-Ushi population and research on functions of SNP-containing genes, which would aid in understanding the molecular basis underlying phenotypic variation of economically important traits in cattle and in improving intrinsic defects in domestic cattle breeds. |
---|