Cargando…

Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.

Griseofulvin(GF) has become the drug of choice as an antifungal agent for patients who suffer from many kinds of fungal infection. In order to clarify hepatic injury by griseofulvin(GF) overload and the effect of UDCA on GF-induced hepatic injury, the authors carried out biochemical, histologic, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, S. W., Han, J. H., Lim, K. T., Cho, H. M., Chung, K. W., Sun, H. S., Park, D. H., Kim, B. S., Seo, E. J.
Formato: Texto
Lenguaje:English
Publicado: Korean Academy of Medical Sciences 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049691/
https://www.ncbi.nlm.nih.gov/pubmed/1751019
_version_ 1782199255118643200
author Choi, S. W.
Han, J. H.
Lim, K. T.
Cho, H. M.
Chung, K. W.
Sun, H. S.
Park, D. H.
Kim, B. S.
Seo, E. J.
author_facet Choi, S. W.
Han, J. H.
Lim, K. T.
Cho, H. M.
Chung, K. W.
Sun, H. S.
Park, D. H.
Kim, B. S.
Seo, E. J.
author_sort Choi, S. W.
collection PubMed
description Griseofulvin(GF) has become the drug of choice as an antifungal agent for patients who suffer from many kinds of fungal infection. In order to clarify hepatic injury by griseofulvin(GF) overload and the effect of UDCA on GF-induced hepatic injury, the authors carried out biochemical, histologic, and ultrastructural studies of liver following treatment with griseofulvin and ursodeoxycholic acid(UDCA) in mice. Urine porphobilinogen excretion in the group treated with GF alone was significantly increased and reached the highest level in the 4th week and declined thereafter. Biochemical studies of the liver function showed no remarkable changes of serum bilirubin levels throughout the experimental period in all groups, except for SGPT and alkaline phosphatase activities which were significantly elevated and reached the highest level in the second week. Then they slightly decreased in GF treated groups(GF alone and GF plus UDCA) in comparison with the control group. Pathologic findings in the group treated with GF alone include focal liver cell necrosis(esp, zone 3), Mallory bodies in hepatocytes(esp, zone 1), Kupffer cell activation, and brown protoporphyrin pigments in the hepatocytes, bile canaliculi and interlobular bile ducts with a marked inflammatory cell infiltration in the portal tracts. Under the polarizing light microscope, bile ductular and canalicular thrombi showed a "Maltese cross" birefringence in mice treated with GF alone. There is no definite finding of fatty change in hepatocyte. Under the microscope, the liver appeared normal with an intact lobular architecture in the GF plus UDCA treated group. Electron microscopically, GF-induced changes include swelling of mitochondria, globular protoporphyrin crystals in the hepatocyte cytoplasm, markedly dilated bile cannaliculi and bile ducts and the formation of a Mallory hyaline bodies in the hepatocytes. There were no noticeable structural changes in the GF plus UDCA-treated group. Therefore the results suggest that GF causes hepatic injury, namely porphyria and cholestasis, and the treatment of UDCA may have cytoprotective and choleretic effects on GF-induced hepatic injuries.
format Text
id pubmed-3049691
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher Korean Academy of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-30496912011-03-09 Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin. Choi, S. W. Han, J. H. Lim, K. T. Cho, H. M. Chung, K. W. Sun, H. S. Park, D. H. Kim, B. S. Seo, E. J. J Korean Med Sci Research Article Griseofulvin(GF) has become the drug of choice as an antifungal agent for patients who suffer from many kinds of fungal infection. In order to clarify hepatic injury by griseofulvin(GF) overload and the effect of UDCA on GF-induced hepatic injury, the authors carried out biochemical, histologic, and ultrastructural studies of liver following treatment with griseofulvin and ursodeoxycholic acid(UDCA) in mice. Urine porphobilinogen excretion in the group treated with GF alone was significantly increased and reached the highest level in the 4th week and declined thereafter. Biochemical studies of the liver function showed no remarkable changes of serum bilirubin levels throughout the experimental period in all groups, except for SGPT and alkaline phosphatase activities which were significantly elevated and reached the highest level in the second week. Then they slightly decreased in GF treated groups(GF alone and GF plus UDCA) in comparison with the control group. Pathologic findings in the group treated with GF alone include focal liver cell necrosis(esp, zone 3), Mallory bodies in hepatocytes(esp, zone 1), Kupffer cell activation, and brown protoporphyrin pigments in the hepatocytes, bile canaliculi and interlobular bile ducts with a marked inflammatory cell infiltration in the portal tracts. Under the polarizing light microscope, bile ductular and canalicular thrombi showed a "Maltese cross" birefringence in mice treated with GF alone. There is no definite finding of fatty change in hepatocyte. Under the microscope, the liver appeared normal with an intact lobular architecture in the GF plus UDCA treated group. Electron microscopically, GF-induced changes include swelling of mitochondria, globular protoporphyrin crystals in the hepatocyte cytoplasm, markedly dilated bile cannaliculi and bile ducts and the formation of a Mallory hyaline bodies in the hepatocytes. There were no noticeable structural changes in the GF plus UDCA-treated group. Therefore the results suggest that GF causes hepatic injury, namely porphyria and cholestasis, and the treatment of UDCA may have cytoprotective and choleretic effects on GF-induced hepatic injuries. Korean Academy of Medical Sciences 1991-06 /pmc/articles/PMC3049691/ /pubmed/1751019 Text en
spellingShingle Research Article
Choi, S. W.
Han, J. H.
Lim, K. T.
Cho, H. M.
Chung, K. W.
Sun, H. S.
Park, D. H.
Kim, B. S.
Seo, E. J.
Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title_full Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title_fullStr Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title_full_unstemmed Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title_short Effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
title_sort effect of ursodeoxycholic acid on experimental hepatic porphyria induced by griseofulvin.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049691/
https://www.ncbi.nlm.nih.gov/pubmed/1751019
work_keys_str_mv AT choisw effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT hanjh effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT limkt effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT chohm effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT chungkw effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT sunhs effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT parkdh effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT kimbs effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin
AT seoej effectofursodeoxycholicacidonexperimentalhepaticporphyriainducedbygriseofulvin