Cargando…

Complete Killing of Caenorhabditis elegans by Burkholderia pseudomallei Is Dependent on Prolonged Direct Association with the Viable Pathogen

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental facto...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Song-Hua, Ooi, Soon-Keat, Mahadi, Nor Muhammad, Tan, Man-Wah, Nathan, Sheila
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049773/
https://www.ncbi.nlm.nih.gov/pubmed/21408228
http://dx.doi.org/10.1371/journal.pone.0016707
Descripción
Sumario:BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we showed that different isolates of B. pseudomallei have divergent ability to kill the soil nematode Caenorhabditis elegans. The rate of nematode killing was also dependent on growth media: B. pseudomallei grown on peptone-glucose media killed C. elegans more rapidly than bacteria grown on the nematode growth media. Filter and bacteria cell-free culture filtrate assays demonstrated that the extent of killing observed is significantly less than that observed in the direct killing assay. Additionally, we showed that B. pseudomallei does not persistently accumulate within the C. elegans gut as brief exposure to B. pseudomallei is not sufficient for C. elegans infection. CONCLUSIONS/SIGNIFICANCE: A combination of genetic and environmental factors affects virulence. In addition, we have also demonstrated that a Burkholderia-specific mechanism mediating the pathogenic effect in C. elegans requires proliferating B. pseudomallei to continuously produce toxins to mediate complete killing.