Cargando…
Selection of reference genes for gene expression studies in ultraviolet B-irradiated human skin fibroblasts using quantitative real-time PCR
BACKGROUND: Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental stu...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050716/ https://www.ncbi.nlm.nih.gov/pubmed/21324211 http://dx.doi.org/10.1186/1471-2199-12-8 |
Sumario: | BACKGROUND: Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental studies as reference genes. Our previous studies have demonstrated that the expression of vimentin, one cytoskeletal protein, was increased in ultraviolet B (UVB)-irradiated fibroblasts. Thus, we examined the expression of other cytoskeleton protein genes, ACTB (actin, beta), TUBA1A (tubulin, alpha 1a), and TUBB1 (tubulin, beta 1), in human dermal fibroblasts irradiated by UVB to determine which of these candidates were the most appropriate reference genes. RESULTS: Quantitative real-time PCR followed by analysis with the NormFinder and geNorm software programmes was performed. The initial screening of the expression patterns demonstrated that the expression of VIM was suppressed after UVB irradiation at doses ≥25 mJ/cm(2 )and that the expression of TUBA1A was significantly reduced by UVB doses ≥75 mJ/cm(2 )in cultured human dermal fibroblasts. The analysis of the experimental data revealed ACTB to be the most stably expressed gene, followed by GAPDH (aglyceraldehyde-3-phosphate dehydrogenase), under these experimental conditions. By contrast, VIM was found to be the least stable gene. The combination of ACTB and TUBB1 was revealed to be the gene pair that introduced the least systematic error into the data normalisation. CONCLUSION: The data herein provide evidence that ACTB and TUBB1 are suitable reference genes in human skin fibroblasts irradiated by UVB, whereas VIM and TUBA1A are not and should therefore be excluded as reference genes in any gene expression studies involving UVB-irradiated human skin fibroblasts. |
---|