Cargando…
Interactions among oscillatory pathways in NF-kappa B signaling
BACKGROUND: Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050740/ https://www.ncbi.nlm.nih.gov/pubmed/21291535 http://dx.doi.org/10.1186/1752-0509-5-23 |
_version_ | 1782199380350074880 |
---|---|
author | Wang, Yunjiao Paszek, Pawel Horton, Caroline A Kell, Douglas B White, Michael RH Broomhead, David S Muldoon, Mark R |
author_facet | Wang, Yunjiao Paszek, Pawel Horton, Caroline A Kell, Douglas B White, Michael RH Broomhead, David S Muldoon, Mark R |
author_sort | Wang, Yunjiao |
collection | PubMed |
description | BACKGROUND: Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. RESULTS: First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. CONCLUSIONS: Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of nonlinear interactions. |
format | Text |
id | pubmed-3050740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30507402011-04-06 Interactions among oscillatory pathways in NF-kappa B signaling Wang, Yunjiao Paszek, Pawel Horton, Caroline A Kell, Douglas B White, Michael RH Broomhead, David S Muldoon, Mark R BMC Syst Biol Research Article BACKGROUND: Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. RESULTS: First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. CONCLUSIONS: Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of nonlinear interactions. BioMed Central 2011-02-03 /pmc/articles/PMC3050740/ /pubmed/21291535 http://dx.doi.org/10.1186/1752-0509-5-23 Text en Copyright ©2011 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Yunjiao Paszek, Pawel Horton, Caroline A Kell, Douglas B White, Michael RH Broomhead, David S Muldoon, Mark R Interactions among oscillatory pathways in NF-kappa B signaling |
title | Interactions among oscillatory pathways in NF-kappa B signaling |
title_full | Interactions among oscillatory pathways in NF-kappa B signaling |
title_fullStr | Interactions among oscillatory pathways in NF-kappa B signaling |
title_full_unstemmed | Interactions among oscillatory pathways in NF-kappa B signaling |
title_short | Interactions among oscillatory pathways in NF-kappa B signaling |
title_sort | interactions among oscillatory pathways in nf-kappa b signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050740/ https://www.ncbi.nlm.nih.gov/pubmed/21291535 http://dx.doi.org/10.1186/1752-0509-5-23 |
work_keys_str_mv | AT wangyunjiao interactionsamongoscillatorypathwaysinnfkappabsignaling AT paszekpawel interactionsamongoscillatorypathwaysinnfkappabsignaling AT hortoncarolinea interactionsamongoscillatorypathwaysinnfkappabsignaling AT kelldouglasb interactionsamongoscillatorypathwaysinnfkappabsignaling AT whitemichaelrh interactionsamongoscillatorypathwaysinnfkappabsignaling AT broomheaddavids interactionsamongoscillatorypathwaysinnfkappabsignaling AT muldoonmarkr interactionsamongoscillatorypathwaysinnfkappabsignaling |